7 resultados para Waste electronic apparatus and appliances
em Digital Commons @ DU | University of Denver Research
Resumo:
High-quality software, delivered on time and budget, constitutes a critical part of most products and services in modern society. Our government has invested billions of dollars to develop software assets, often to redevelop the same capability many times. Recognizing the waste involved in redeveloping these assets, in 1992 the Department of Defense issued the Software Reuse Initiative. The vision of the Software Reuse Initiative was "To drive the DoD software community from its current "re-invent the software" cycle to a process-driven, domain-specific, architecture-centric, library-based way of constructing software.'' Twenty years after issuing this initiative, there is evidence of this vision beginning to be realized in nonembedded systems. However, virtually every large embedded system undertaken has incurred large cost and schedule overruns. Investigations into the root cause of these overruns implicates reuse. Why are we seeing improvements in the outcomes of these large scale nonembedded systems and worse outcomes in embedded systems? This question is the foundation for this research. The experiences of the Aerospace industry have led to a number of questions about reuse and how the industry is employing reuse in embedded systems. For example, does reuse in embedded systems yield the same outcomes as in nonembedded systems? Are the outcomes positive? If the outcomes are different, it may indicate that embedded systems should not use data from nonembedded systems for estimation. Are embedded systems using the same development approaches as nonembedded systems? Does the development approach make a difference? If embedded systems develop software differently from nonembedded systems, it may mean that the same processes do not apply to both types of systems. What about the reuse of different artifacts? Perhaps there are certain artifacts that, when reused, contribute more or are more difficult to use in embedded systems. Finally, what are the success factors and obstacles to reuse? Are they the same in embedded systems as in nonembedded systems? The research in this dissertation is comprised of a series of empirical studies using professionals in the aerospace and defense industry as its subjects. The main focus has been to investigate the reuse practices of embedded systems professionals and nonembedded systems professionals and compare the methods and artifacts used against the outcomes. The research has followed a combined qualitative and quantitative design approach. The qualitative data were collected by surveying software and systems engineers, interviewing senior developers, and reading numerous documents and other studies. Quantitative data were derived from converting survey and interview respondents' answers into coding that could be counted and measured. From the search of existing empirical literature, we learned that reuse in embedded systems are in fact significantly different from nonembedded systems, particularly in effort in model based development approach and quality where the development approach was not specified. The questionnaire showed differences in the development approach used in embedded projects from nonembedded projects, in particular, embedded systems were significantly more likely to use a heritage/legacy development approach. There was also a difference in the artifacts used, with embedded systems more likely to reuse hardware, test products, and test clusters. Nearly all the projects reported using code, but the questionnaire showed that the reuse of code brought mixed results. One of the differences expressed by the respondents to the questionnaire was the difficulty in reuse of code for embedded systems when the platform changed. The semistructured interviews were performed to tell us why the phenomena in the review of literature and the questionnaire were observed. We asked respected industry professionals, such as senior fellows, fellows and distinguished members of technical staff, about their experiences with reuse. We learned that many embedded systems used heritage/legacy development approaches because their systems had been around for many years, before models and modeling tools became available. We learned that reuse of code is beneficial primarily when the code does not require modification, but, especially in embedded systems, once it has to be changed, reuse of code yields few benefits. Finally, while platform independence is a goal for many in nonembedded systems, it is certainly not a goal for the embedded systems professionals and in many cases it is a detriment. However, both embedded and nonembedded systems professionals endorsed the idea of platform standardization. Finally, we conclude that while reuse in embedded systems and nonembedded systems is different today, they are converging. As heritage embedded systems are phased out, models become more robust and platforms are standardized, reuse in embedded systems will become more like nonembedded systems.
Resumo:
Latino family involvement is an important issue in the field of education. Effective strategies to promote family involvement in the Latino community are vital for the educational attainment of Latino students and emotional wellbeing of Latino families. This study used focus groups, in-depth interviews, and observations to examine Latino family involvement and the relationships and communication patterns between Latina mothers and daughters. The Latina mother-daughter relationship was studied in an effort to gain a better understanding of how this relationship affects a Latina daughter's educational attainment and sense of resiliency. Results indicated that a positive relationship between a Latina mother and daughter can increase a Latina daughter's level of educational attainment and sense of resiliency. Additionally, a Latina daughter's level of self-motivation can affect her level of educational attainment as well. Cultural narratives were found to be a common type of communication pattern used between Latina mothers and daughters. They were used to teach cultural values, life lessons, and experiential learning. By improving family involvement efforts within the Latino culture, Latino students will likely see drastic improvements in their overall levels of educational attainment and emotional wellbeing in schools. Implications for Latino students and families, schools that work with Latino families, and educational policy are also discussed.
Resumo:
The goal of this study is to better understand the genetic basis of Reading Disability (RD) and Attention Deficit Hyperactivity Disorder (ADHD) by examining molecular G x E interactions with parental education for each disorder. Research indicates that despite sharing genetic risk factors, RD and ADHD are influenced by different types of G x E interactions with parental education - a diathesis stress interaction in the case of ADHD and a bioecological interaction in RD. In order to resolve this apparent paradox, we conducted a preliminary study using behavioral genetic methods to test for G x E interactions in RD and the inattentive subtype of ADHD (ADHD-I) in the same sample of monozygotic and dizygotic Colorado Learning Disabilities Research Center same-sex twin pairs (DeFries et al., 1997), and our findings were consistent with the literature. We posited a genetic hypothesis for this opposite pattern of interactions, which suggests that only genes specific to each disorder enter into these opposite interactions, not the shared genes underlying their comorbidity. This study sought to further investigate this paradox using molecular genetics methods. We examined multiple candidate genes identified for RD or related language phenotypes and those identified for ADHD for G x E interactions with parental education. The specific aims of this study were as follows: 1) partition known risk alleles for RD and/or related language phenotypes and ADHD-I into those which are pleiotropic and non-pleiotropic by testing each risk allele for association with both RD and ADHD-I, 2) explore the main effects of parental education on both RD and ADHD-I, 3) address G-E correlations, and 4) conduct exploratory G x E interaction analyses in order to test the genetic hypothesis. Analyses suggested a number of pleiotropic genes that influence both RD and ADHD; however, results did not remain after correcting for multiple comparisons. Although exploratory G x E interaction findings were not significant after multiple comparison correction, results suggested a G x E interaction in the bioecological direction with KIAA0319, parental education, and ADHD-I. Given the limited power in the current study, replication of these findings with larger samples is necessary.
Resumo:
Fragile X syndrome (FXS) is the most common form of inherited mental retardation in humans. FXS is caused by loss of the Fragile X Mental Retardation Protein (FMRP), an important regulator of neuronal mRNA translation. Patients with FXS display cognitive deficits including memory problems. Protein synthesis-dependent long-term changes in synaptic plasticity are involved in the establishment and maintenance of long-term memory. One prevalent theory of FXS pathology predicts that FMRP is required to negatively regulate the translation of important mRNAs at the synapse. We are investigating microRNAs (miRNAs) as a potential regulator of synaptic FMRP-regulated mRNAs that have previously been described as being crucial to the process of synaptic plasticity. The general hypothesis underlying this thesis is that FMRP may negatively regulate the expression of futsch (the Drosophila homologue of the microtubule-associated protein gene MAP1B) via the miRNA pathway. The first step we took in testing this hypothesis was to confirm that futsch is subject to miRNA-mediated translational control. Using in silico target analysis, we predicted that several neuronally expressed miRNAs target the futsch mRNA 3'UTR and repress expression of Futsch protein. Then, using an in vitro luciferase reporter system, we showed that miR-315 and members of the miR-9 family selectively down-regulated futsch reporter translation. We have confirmed by site- directed mutagenesis that the miRNA interaction with the futsch 3'UTR is specific to the miRNA seed region binding site. Interestingly, reduction of FMRP levels by RNAi had no effect on futsch 3'UTR reporter expression. Together, these data suggest regulation of futsch expression by the miRNA pathway might be independent of FMRP activity. However, additional experiments need to be completed to confirm these preliminary results.
Resumo:
Transnational artist Shahzia Sikander challenges the limitations of Edward Said's postcolonial emphasis on secular humanism by deploying the heterogeneous traditions of South Asian miniature painting while strategically drawing on tradition to critique contemporaneity. Through a palimpsest process of composition, Sikander reincorporates the unknown and silenced histories implicit in the tradition of miniature painting to create social imaginaries with motifs that draw on the diverse traditions of South Asian religions and aesthetics to create a subversive politics of remembering wherein alternative images of cosmopolitanism emerge. Through a sustained analysis, this dissertation demonstrates how these alternative traditions interrogate and critique the limitations of postcolonial theory. Particularly important to this critique are some recent approaches of Third World feminists that highlight the limitations of secular humanism implicit in much of postcolonial critique. Sikander's compositions mirror these approaches as her motifs of the feminine become an intervention into the spiritual emptiness and ethical confusions of contemporaneity. In effect, Sikander's work is an intervention, a warning, and a plea for the re-invention of positive alternatives as her images embody and facilitate a critical and daring consciousness that is necessary to both our social and spiritual well-being.
Resumo:
The purpose of this research was to apply the use of direct ablation plasma spectroscopic techniques, including spark-induced breakdown spectroscopy (SIBS) and laser-induced breakdown spectroscopy (LIBS), to a variety of environmental matrices. These were applied to two different analytical problems. SIBS instrumentation was adapted in order to develop a fieldable monitor for the measurement of carbon in soil. SIBS spectra in the 200 nm to 400 nm region of several soils were collected, and the neutral carbon line (247.85 nm) was compared to total carbon concentration determined by standard dry combustion analysis. Additionally, Fe and Si were evaluated in a multivariate model in order to determine their impacts on the model's predictive power for total carbon concentrations. The results indicate that SIBS is a viable method to quantify total carbon levels in soils; obtaining a good correlation between measured and predicated carbon in soils. These results indicate that multivariate analysis can be used to construct a calibration model for SIBS soil spectra, and SIBS is a promising method for the determination of total soil carbon. SIBS was also applied to the study of biological warfare agent simulants. Elemental compositions (determined independently) of bioaerosol samples were compared to the SIBS atomic (Ca, Al, Fe and Si) and molecular (CN, N2 and OH) emission signals. Results indicate a linear relationship between the temporally integrated emission strength and the concentration of the associated element. Finally, LIBS signals of hematite were analyzed under low pressures of pure CO2 and compared with signals acquired with a mixture of CO2, N2 and Ar, which is representative of the Martian atmosphere. This research was in response to the potential use of LIBS instrumentation on the Martian surface and to the challenges associated with these measurements. Changes in Ca, Fe and Al lineshapes observed in the LIBS spectra at different gas compositions and pressures were studied. It was observed that the size of the plasma formed on the hematite changed in a non-linear way as a function of decreasing pressure in a CO2 atmosphere and a simulated Martian atmosphere.
Resumo:
Development of transparent oxide semiconductors (TOS) from Earth-abundant materials is of great interest for cost-effective thin film device applications, such as solar cells, light emitting diodes (LEDs), touch-sensitive displays, electronic paper, and transparent thin film transistors. The need of inexpensive or high performance electrode might be even greater for organic photovoltaic (OPV), with the goal to harvest renewable energy with inexpensive, lightweight, and cost competitive materials. The natural abundance of zinc and the wide bandgap ($sim$3.3 eV) of its oxide make it an ideal candidate. In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the microstructure during the thin films growth, resulting in GZO electrode with conductivity greater than 4000 S/cm and transparency greater than 90 %. Similarly, various studies on research and development of Indium Zinc Tin Oxide and Indium Zinc Oxide thin films which can be applied to flexible substrates for next generation solar cells application is presented. In these new TCO systems, understanding the role of crystallographic structure ranging from poly-crystalline to amorphous phase and the influence on the charge transport and optical transparency as well as important surface passivation and surface charge transport properties. Implementation of these electrode based on ZnO on opto-electronics devices such as OLED and OPV is complicated due to chemical interaction over time with the organic layer or with ambient. The problem of inefficient charge collection/injection due to poor understanding of interface and/or bulk property of oxide electrode exists at several oxide-organic interfaces. The surface conductivity, the work function, the formation of dipoles and the band-bending at the interfacial sites can positively or negatively impact the device performance. Detailed characterization of the surface composition both before and after various chemicals treatment of various oxide electrode can therefore provide insight into optimization of device performance. Some of the work related to controlling the interfacial chemistry associated with charge transport of transparent electrodes are discussed. Thus, the role of various pre-treatment on poly-crystalline GZO electrode and amorphous indium zinc oxide (IZO) electrode is compared and contrasted. From the study, we have found that removal of defects and self passivating defects caused by accumulation of hydroxides in the surface of both poly-crystalline GZO and amorphous IZO, are critical for improving the surface conductivity and charge transport. Further insight on how these insulating and self-passivating defects cause charge accumulation and recombination in an device is discussed. With recent rapid development of bulk-heterojunction organic photovoltaics active materials, devices employing ZnO and ZnO based electrode provide air stable and cost-competitive alternatives to traditional inorganic photovoltaics. The organic light emitting diodes (OLEDs) have already been commercialized, thus to follow in the footsteps of this technology, OPV devices need further improvement in power conversion efficiency and stable materials resulting in long device lifetimes. Use of low work function metals such as Ca/Al in standard geometry do provide good electrode for electron collection, but serious problems using low work-function metal electrodes originates from the formation of non-conductive metal oxide due to oxidation resulting in rapid device failure. Hence, using low work-function, air stable, conductive metal oxides such as ZnO as electrons collecting electrode and high work-function, air stable metals such as silver for harvesting holes, has been on the rise. Devices with degenerately doped ZnO functioning as transparent conductive electrode, or as charge selective layer in a polymer/fullerene based heterojunction, present useful device structures for investigating the functional mechanisms within OPV devices and a possible pathway towards improved air-stable high efficiency devices. Furthermore, analysis of the physical properties of the ZnO layers with varying thickness, crystallographic structure, surface chemistry and grain size deposited via various techniques such as atomic layer deposition, sputtering and solution-processed ZnO with their respective OPV device performance is discussed. We find similarity and differences in electrode property for good charge injection in OLEDs and good charge collection in OPV devices very insightful in understanding physics behind device failures and successes. In general, self-passivating surface of amorphous TCOs IZO, ZTO and IZTO forms insulating layer that hinders the charge collection. Similarly, we find modulation of the carrier concentration and the mobility in electron transport layer, namely zinc oxide thin films, very important for optimizing device performance.