4 resultados para U.S. Air Force

em Digital Commons @ DU | University of Denver Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

U.S. Air Force installations by virtue of their isolation and often remote locations provide protection to critical habitats that would otherwise be susceptible to development and other stressors. While Air Force activities may not always compliment environmental protection, a balance between environmental protection and Air Force requirements must be achieved to minimize conflict. Special Area Management Plans (SAMPs) are a possible solution in the quest to balance conservation with mission requirements. Beale Air Force Base, California is the first military installation to pursue implementation of a SAMP. This project found that SAMP implementation could be a tool to successfully balance conservation efforts with military requirements on other Air Force installations; however, further education on the SAMP process would be required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

United States Air Force (USAF) energy policy is a measured but aggressive response to federal energy policy guidance. Previous USAF efforts, like those of the federal government, focused primarily on energy intensity reduction, cost, and BTU savings, and in certain cases have resulted in facility greenhouse gas (GHG) emission reductions. The USAF now faces the challenge of integrating GHG reduction goals and inventory requirements set forth in Executive Order 13514. Using USAF reported energy consumption data, facility GHG emission estimates have been synthesized to identify trends and elucidate existing energy best practices to be applied as part of overarching USAF GHG mitigation efforts and to highlight areas of possible concern for the integration of EO 13514 into operational USAF policy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The five installations operated by the Department of Defense (DoD) in the Front Range region of Colorado do not meet the DoD non-hazardous solid waste diversion goal of 40 percent, further impacting landfills and generating greenhouse gases. This applied capstone project identifies and evaluates best management practices of a Materials Recovery Facility (MRF), qualitatively and quantitatively, to increase solid waste diversion at a DoD MRF. An environmental benefits model quantified the externalities of increasing solid waste diversion at the installations. By implementing best management practices at a MRF, the DoD would divert an additional 1,400 tons of solid waste per year, resulting in the equivalent of 1,502,567 gallons of gasoline being saved, among many benefits presented in this capstone.