3 resultados para Regression-based decomposition.
em Digital Commons @ DU | University of Denver Research
Resumo:
The purposes of this study were (1) to validate of the item-attribute matrix using two levels of attributes (Level 1 attributes and Level 2 sub-attributes), and (2) through retrofitting the diagnostic models to the mathematics test of the Trends in International Mathematics and Science Study (TIMSS), to evaluate the construct validity of TIMSS mathematics assessment by comparing the results of two assessment booklets. Item data were extracted from Booklets 2 and 3 for the 8th grade in TIMSS 2007, which included a total of 49 mathematics items and every student's response to every item. The study developed three categories of attributes at two levels: content, cognitive process (TIMSS or new), and comprehensive cognitive process (or IT) based on the TIMSS assessment framework, cognitive procedures, and item type. At level one, there were 4 content attributes (number, algebra, geometry, and data and chance), 3 TIMSS process attributes (knowing, applying, and reasoning), and 4 new process attributes (identifying, computing, judging, and reasoning). At level two, the level 1 attributes were further divided into 32 sub-attributes. There was only one level of IT attributes (multiple steps/responses, complexity, and constructed-response). Twelve Q-matrices (4 originally specified, 4 random, and 4 revised) were investigated with eleven Q-matrix models (QM1 ~ QM11) using multiple regression and the least squares distance method (LSDM). Comprehensive analyses indicated that the proposed Q-matrices explained most of the variance in item difficulty (i.e., 64% to 81%). The cognitive process attributes contributed to the item difficulties more than the content attributes, and the IT attributes contributed much more than both the content and process attributes. The new retrofitted process attributes explained the items better than the TIMSS process attributes. Results generated from the level 1 attributes and the level 2 attributes were consistent. Most attributes could be used to recover students' performance, but some attributes' probabilities showed unreasonable patterns. The analysis approaches could not demonstrate if the same construct validity was supported across booklets. The proposed attributes and Q-matrices explained the items of Booklet 2 better than the items of Booklet 3. The specified Q-matrices explained the items better than the random Q-matrices.
Resumo:
Falls are one of the greatest threats to elderly health in their daily living routines and activities. Therefore, it is very important to detect falls of an elderly in a timely and accurate manner, so that immediate response and proper care can be provided, by sending fall alarms to caregivers. Radar is an effective non-intrusive sensing modality which is well suited for this purpose, which can detect human motions in all types of environments, penetrate walls and fabrics, preserve privacy, and is insensitive to lighting conditions. Micro-Doppler features are utilized in radar signal corresponding to human body motions and gait to detect falls using a narrowband pulse-Doppler radar. Human motions cause time-varying Doppler signatures, which are analyzed using time-frequency representations and matching pursuit decomposition (MPD) for feature extraction and fall detection. The extracted features include MPD features and the principal components of the time-frequency signal representations. To analyze the sequential characteristics of typical falls, the extracted features are used for training and testing hidden Markov models (HMM) in different falling scenarios. Experimental results demonstrate that the proposed algorithm and method achieve fast and accurate fall detections. The risk of falls increases sharply when the elderly or patients try to exit beds. Thus, if a bed exit can be detected at an early stage of this motion, the related injuries can be prevented with a high probability. To detect bed exit for fall prevention, the trajectory of head movements is used for recognize such human motion. A head detector is trained using the histogram of oriented gradient (HOG) features of the head and shoulder areas from recorded bed exit images. A data association algorithm is applied on the head detection results to eliminate head detection false alarms. Then the three dimensional (3D) head trajectories are constructed by matching scale-invariant feature transform (SIFT) keypoints in the detected head areas from both the left and right stereo images. The extracted 3D head trajectories are used for training and testing an HMM based classifier for recognizing bed exit activities. The results of the classifier are presented and discussed in the thesis, which demonstrates the effectiveness of the proposed stereo vision based bed exit detection approach.
Resumo:
As world communication, technology, and trade become increasingly integrated through globalization, multinational corporations seek employees with global leadership experience and skills. However, the demand for these skills currently outweighs the supply. Given the rarity of globally ready leaders, global competency development should be emphasized in higher education programs. The reality, however, is that university graduate programs are often outdated and focus mostly on cognitive learning. Global leadership competence requires moving beyond the cognitive domain of learning to create socially responsible and culturally connected global leaders. This requires attention to development methods; however, limited research in global leadership development methods has been conducted. A new conceptual model, the global leadership development ecosystem, was introduced in this study to guide the design and evaluation of global leadership development programs. It was based on three theories of learning and was divided into four development methodologies. This study quantitatively tested the model and used it as a framework for an in-depth examination of the design of one International MBA program. The program was first benchmarked, by means of a qualitative best practices analysis, against the top-ranking IMBA programs in the world. Qualitative data from students, faculty, administrators, and staff was then examined, using descriptive and focused data coding. Quantitative data analysis, using PASW Statistics software, and a hierarchical regression, showed the individual effect of each of the four development methods, as well as their combined effect, on student scores on a global leadership assessment. The analysis revealed that each methodology played a distinct and important role in developing different competencies of global leadership. It also confirmed the critical link between self-efficacy and global leadership development.