2 resultados para Power system planning
em Digital Commons @ DU | University of Denver Research
Resumo:
Reactive power is critical to the operation of the power networks on both safety aspects and economic aspects. Unreasonable distribution of the reactive power would severely affect the power quality of the power networks and increases the transmission loss. Currently, the most economical and practical approach to minimizing the real power loss remains using reactive power dispatch method. Reactive power dispatch problem is nonlinear and has both equality constraints and inequality constraints. In this thesis, PSO algorithm and MATPOWER 5.1 toolbox are applied to solve the reactive power dispatch problem. PSO is a global optimization technique that is equipped with excellent searching capability. The biggest advantage of PSO is that the efficiency of PSO is less sensitive to the complexity of the objective function. MATPOWER 5.1 is an open source MATLAB toolbox focusing on solving the power flow problems. The benefit of MATPOWER is that its code can be easily used and modified. The proposed method in this thesis minimizes the real power loss in a practical power system and determines the optimal placement of a new installed DG. IEEE 14 bus system is used to evaluate the performance. Test results show the effectiveness of the proposed method.
Resumo:
Short-term load forecasting of power system has been a classic problem for a long time. Not merely it has been researched extensively and intensively, but also a variety of forecasting methods has been raised. This thesis outlines some aspects and functions of smart meter. It also presents different policies and current statuses as well as future projects and objectives of SG development in several countries. Then the thesis compares main aspects about latest products of smart meter from different companies. Lastly, three types of prediction models are established in MATLAB to emulate the functions of smart grid in the short-term load forecasting, and then their results are compared and analyzed in terms of accuracy. For this thesis, more variables such as dew point temperature are used in the Neural Network model to achieve more accuracy for better short-term load forecasting results.