2 resultados para Non-thermal Plasma

em Digital Commons @ DU | University of Denver Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to apply the use of direct ablation plasma spectroscopic techniques, including spark-induced breakdown spectroscopy (SIBS) and laser-induced breakdown spectroscopy (LIBS), to a variety of environmental matrices. These were applied to two different analytical problems. SIBS instrumentation was adapted in order to develop a fieldable monitor for the measurement of carbon in soil. SIBS spectra in the 200 nm to 400 nm region of several soils were collected, and the neutral carbon line (247.85 nm) was compared to total carbon concentration determined by standard dry combustion analysis. Additionally, Fe and Si were evaluated in a multivariate model in order to determine their impacts on the model's predictive power for total carbon concentrations. The results indicate that SIBS is a viable method to quantify total carbon levels in soils; obtaining a good correlation between measured and predicated carbon in soils. These results indicate that multivariate analysis can be used to construct a calibration model for SIBS soil spectra, and SIBS is a promising method for the determination of total soil carbon. SIBS was also applied to the study of biological warfare agent simulants. Elemental compositions (determined independently) of bioaerosol samples were compared to the SIBS atomic (Ca, Al, Fe and Si) and molecular (CN, N2 and OH) emission signals. Results indicate a linear relationship between the temporally integrated emission strength and the concentration of the associated element. Finally, LIBS signals of hematite were analyzed under low pressures of pure CO2 and compared with signals acquired with a mixture of CO2, N2 and Ar, which is representative of the Martian atmosphere. This research was in response to the potential use of LIBS instrumentation on the Martian surface and to the challenges associated with these measurements. Changes in Ca, Fe and Al lineshapes observed in the LIBS spectra at different gas compositions and pressures were studied. It was observed that the size of the plasma formed on the hematite changed in a non-linear way as a function of decreasing pressure in a CO2 atmosphere and a simulated Martian atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal buckling behavior of automotive clutch and brake discs is studied by making the use of finite element method. It is found that the temperature distribution along the radius and the thickness affects the critical buckling load considerably. The results indicate that a monotonic temperature profile leads to a coning mode with the highest temperature located at the inner radius. Whereas a temperature profile with the maximum temperature located in the middle leads to a dominant non-axisymmetric buckling mode, which results in a much higher buckling temperature. A periodic variation of temperature cannot lead to buckling. The temperature along the thickness can be simplified by the mean temperature method in the single material model. The thermal buckling analysis of friction discs with friction material layer, cone angle geometry and fixed teeth boundary conditions are also studied in detail. The angular geometry and the fixed teeth can improve the buckling temperature significantly. Young’s Modulus has no effect when single material is applied in the free or restricted conditions. Several equations are derived to validate the result. Young’s modulus ratio is a useful factor when the clutch has several material layers. The research findings from this paper are useful for automotive clutch and brake discs design against structural instability induced by thermal buckling.