4 resultados para Drosophila
em Digital Commons @ DU | University of Denver Research
Resumo:
The primary goal of this thesis was to determine if spaced synaptic stimulation induced the differential expression of microRNAs (miRNAs) in the Drosophila melanogaster central nervous system (CNS). Prior to attaining this goal, we needed to identify and validate a spaced stimulation paradigm that could induce the formation of new synaptic growth at a model synapse, the larval neuromuscular junction (NMJ). Both Channelrhodopsin- and high potassium-based stimulation paradigms adapted from (Ataman, et al. 2008) were tested. Once validation of these paradigms was complete, we sought to characterize the miRNA expression profile of the larval CNS by miRNA array. Following attainment of these data, we used quantitative real-time PCR (RT-qPCR) to determine if acute synaptic stimulation caused the differential expression of neuronal miRNAs. We found that upon high potassium spaced training in a wild type (Canton S) genotype, 5 miRNAs showed significant differential expression when normalized to a validated reference gene, the U1 snRNA. Moreover, absolute quantification of our RT-qPCR study implicated one miRNA: miR-958 as being significantly regulated by activity. Investigation into potential targets for miR-958 revealed it to be a potential regular of Dlar, a protein tyrosine phosphatase implicated in synapse development. This investigation provides the foundation to directly test our underlying hypothesis that, following spaced training, differential expression of miRNAs alters the translation of proteins required to induce and maintain these structural changes at the synapse.
Resumo:
ABSTRACT Convergent extension is a highly conserved process among mammals, in which the tissue narrows in one axis, and extends across another. Tissue elongation is directed by the regulation of cell interface behaviors, which guides cell intercalation and rosette formation. Rosette formation occurs through the contraction of vertically oriented cell interfaces, and the subsequent elongation of new horizontal interfaces. It has been shown that actomyosin-generated tension functions to direct rosette formation. In this thesis, I have tested the function of regulators of F-actin networks, as well as endocytic and exocytic mechanisms, to identify new components that control interface behaviors and cell shape. I have performed a screen of F-actin regulators and nucleators, and pinpointed the specific actin nucleator dPod-1 as a candidate protein that is localized to vertical interfaces during tissue elongation. Furthermore, I have probed the function of endocytosis using the Shibire mutation, and demonstrated that endocytosis is required for vertical interface shrinking. Finally, I have used mutations in components of the Exocyst Complex and the associated protein RalA to inhibit exocytic mechanisms, in order to address their function in directing cell and tissue morphologies.
Resumo:
Gastrulation, a process conserved among many higher organisms, is the directed migration of cells into layers that will establish various tissues targeted to become anatomical structures. This process is accomplished through another conserved morphogenetic event, known as cell intercalation. Early in development, this movement of cells within an organized tissue leads to unique cellular arrangements where neighboring cells contract their shared interfaces in order to meet at a shared vertex. In this thesis, I present work that demonstrates a requirement for Dynamin-dependent endocytosis during these contraction events. Using quantitative analysis, I have identified varied cell behaviors during experiments which knockdown the function of dynamin. In addition, I demonstrate the existence of an antagonistic relationship between Dynamin and the Myosin II motor protein. Lastly, localization and functional studies I performed for this work suggest a role for Sorting Nexin proteins during plasma membrane reorganization required for Dynamin-dependent endocytosis.
Activity-Regulated microRNAs: Modulators of Synaptic Growth at the Drosophila Neuromuscular Junction
Resumo:
It is well established that long-term changes in synaptic structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing body of evidence supports the involvement of the microRNA (miRNA) pathway in these processes. We have used the Drosophila neuromuscular junction (NMJ) as a model synapse to characterize activity-regulated miRNAs and their important mRNA targets. Here, we have identified five neuronal miRNAs (miRs-1, -8, -289, -314, and -958) that are significantly downregulated in response to neuronal activity. Furthermore we have discovered that neuronal misexpression of three of these miRNAs (miR-8, -289, and -958) is capable of suppressing new synaptic growth in response to activity suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Putative targets of the activity-regulated miRNAs-8 and -289 are significantly enriched in clusters mapping to functional processes including axon development, pathfinding, and axon growth. We demonstrate that activity-regulated miR-8 regulates the 3'UTR of wingless, a presynaptic regulatory protein involved in the process of activity-dependent axon terminal growth. Additionally, we show that the 3'UTR of the protein tyrosine phosophatase leukocyte antengen related (lar), a protein required for axon guidance and synaptic growth, is regulated by activity-regulated miRNAs-8, -289, and -958 in vitro. Both wg and lar were identified as relevant putative targets for co-regulation based through our functional cluster analysis. One putative target of miR-289 is the Ca2+/calmodulin-dependent protein kinase II (CamKII). While CamKII is not predicted as a target for co-regulation by multiple activity-regulated miRNAs we identified it as an especially pertinent target for analysis in our system for two reasons. First, CamKII has an extremely well characterized role in postsynaptic plasticity, but its presynaptic role is less well characterized and bears further analysis. Second, local translation of CamKII mRNA is regulated in part by the miRNA pathway in an activity-dependent manner in dendrites. We find that the CamKII 3'UTR is regulated by miR-289 in-vitro and this regulation is alleviated by mutating the `seed region' of the miR-289 binding site within the CamKII 3'UTR. Furthermore, we demonstrate a requirement for local translation of CamKII in motoneurons in the process of activity-regulated axon terminal growth.