2 resultados para Domain-specific programming languages

em Digital Commons @ DU | University of Denver Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abundant research has shown that poverty has negative influences on young child academic and psychosocial development, and unfortunately, disparities in school readiness between low and high income children can be seen as early the first year of life. The largest federal early care and education intervention for these vulnerable children is Early Head Start (EHS). To diminish these disparate child outcomes, EHS seeks to provide community based flexible programming for infants and toddlers and their families. Given how relatively recent these programs have been offered, little is known about the nuances of how EHS impacts infant and toddler language and psychosocial development. Using a framework of Community Based Participatory Research (CBPR) this paper had 5 goals: 1) to characterize the associations between domain specific and cumulative risk and child outcomes 2) to validate and explore these risk-outcome associations separately for Children of Hispanic immigrants (COHIs), 3) to explore relationships among family characteristics, multiple environmental factors, and dosage patterns in different EHS program types, 4) to examine the relationship between EHS dosage and child outcomes, and 5) to examine how EHS compliance impacts child internalizing and externalizing behaviors and emerging language abilities. Results of the current study showed that risks were differentially related to child outcomes. Poor maternal mental health was related to child internalizing and externalizing behaviors, but not related to emerging child language skills. Although child language skills were not related to maternal mental health, they were related to economic hardship. Additionally, parent level Spanish use and heritage orientation were associated with positive child outcomes. Results also showed that these relationships differed when COHIs and children with native-born parents were examined separately. Further, unique patterns emerged for EHS program use, for example families who participated in home-based care were less likely to comply with EHS attendance requirements. These findings provide tangible suggestions for EHS stakeholders: namely, the need to develop effective programming that targets engagement for diverse families enrolled in EHS programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality software, delivered on time and budget, constitutes a critical part of most products and services in modern society. Our government has invested billions of dollars to develop software assets, often to redevelop the same capability many times. Recognizing the waste involved in redeveloping these assets, in 1992 the Department of Defense issued the Software Reuse Initiative. The vision of the Software Reuse Initiative was "To drive the DoD software community from its current "re-invent the software" cycle to a process-driven, domain-specific, architecture-centric, library-based way of constructing software.'' Twenty years after issuing this initiative, there is evidence of this vision beginning to be realized in nonembedded systems. However, virtually every large embedded system undertaken has incurred large cost and schedule overruns. Investigations into the root cause of these overruns implicates reuse. Why are we seeing improvements in the outcomes of these large scale nonembedded systems and worse outcomes in embedded systems? This question is the foundation for this research. The experiences of the Aerospace industry have led to a number of questions about reuse and how the industry is employing reuse in embedded systems. For example, does reuse in embedded systems yield the same outcomes as in nonembedded systems? Are the outcomes positive? If the outcomes are different, it may indicate that embedded systems should not use data from nonembedded systems for estimation. Are embedded systems using the same development approaches as nonembedded systems? Does the development approach make a difference? If embedded systems develop software differently from nonembedded systems, it may mean that the same processes do not apply to both types of systems. What about the reuse of different artifacts? Perhaps there are certain artifacts that, when reused, contribute more or are more difficult to use in embedded systems. Finally, what are the success factors and obstacles to reuse? Are they the same in embedded systems as in nonembedded systems? The research in this dissertation is comprised of a series of empirical studies using professionals in the aerospace and defense industry as its subjects. The main focus has been to investigate the reuse practices of embedded systems professionals and nonembedded systems professionals and compare the methods and artifacts used against the outcomes. The research has followed a combined qualitative and quantitative design approach. The qualitative data were collected by surveying software and systems engineers, interviewing senior developers, and reading numerous documents and other studies. Quantitative data were derived from converting survey and interview respondents' answers into coding that could be counted and measured. From the search of existing empirical literature, we learned that reuse in embedded systems are in fact significantly different from nonembedded systems, particularly in effort in model based development approach and quality where the development approach was not specified. The questionnaire showed differences in the development approach used in embedded projects from nonembedded projects, in particular, embedded systems were significantly more likely to use a heritage/legacy development approach. There was also a difference in the artifacts used, with embedded systems more likely to reuse hardware, test products, and test clusters. Nearly all the projects reported using code, but the questionnaire showed that the reuse of code brought mixed results. One of the differences expressed by the respondents to the questionnaire was the difficulty in reuse of code for embedded systems when the platform changed. The semistructured interviews were performed to tell us why the phenomena in the review of literature and the questionnaire were observed. We asked respected industry professionals, such as senior fellows, fellows and distinguished members of technical staff, about their experiences with reuse. We learned that many embedded systems used heritage/legacy development approaches because their systems had been around for many years, before models and modeling tools became available. We learned that reuse of code is beneficial primarily when the code does not require modification, but, especially in embedded systems, once it has to be changed, reuse of code yields few benefits. Finally, while platform independence is a goal for many in nonembedded systems, it is certainly not a goal for the embedded systems professionals and in many cases it is a detriment. However, both embedded and nonembedded systems professionals endorsed the idea of platform standardization. Finally, we conclude that while reuse in embedded systems and nonembedded systems is different today, they are converging. As heritage embedded systems are phased out, models become more robust and platforms are standardized, reuse in embedded systems will become more like nonembedded systems.