4 resultados para DIGITAL ELEVATION MODELS
em Digital Commons @ DU | University of Denver Research
Nesting In The Clouds: Evaluating And Predicting Sea Turtle Nesting Beach Parameters From Lidar Data
Resumo:
Humans' desire for knowledge regarding animal species and their interactions with the natural world have spurred centuries of studies. The relatively new development of remote sensing systems using satellite or aircraft-borne sensors has opened up a wide field of research, which unfortunately largely remains dependent on coarse-scale image spatial resolution, particularly for habitat modeling. For habitat-specialized species, such data may not be sufficient to successfully capture the nuances of their preferred areas. Of particular concern are those species for which topographic feature attributes are a main limiting factor for habitat use. Coarse spatial resolution data can smooth over details that may be essential for habitat characterization. Three studies focusing on sea turtle nesting beaches were completed to serve as an example of how topography can be a main deciding factor for certain species. Light Detection and Ranging (LiDAR) data were used to illustrate that fine spatial scale data can provide information not readily captured by either field work or coarser spatial scale sources. The variables extracted from the LiDAR data could successfully model nesting density for loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) sea turtle species using morphological beach characteristics, highlight beach changes over time and their correlations with nesting success, and provide comparisons for nesting density models across large geographic areas. Comparisons between the LiDAR dataset and other digital elevation models (DEMs) confirmed that fine spatial scale data sources provide more similar habitat information than those with coarser spatial scales. Although these studies focused solely on sea turtles, the underlying principles are applicable for many other wildlife species whose range and behavior may be influenced by topographic features.
Resumo:
Author: Kerry W. Holton Title: SCHLEIERMACHER’S DOCTRINE OF BIBLICAL AUTHORITY: AN ALTERNATIVE TO CONTENT-BASED/SUPERNATURALIST AND FUNCTION- BASED/RATIONALIST MODELS Advisor: Theodore M. Vial, Jr. Degree Date: August 2015 This dissertation examines Friedrich Schleiermacher’s understanding of biblical authority and argues that, as an alternative to strictly supernaturalistic and rationalistic models, his understanding allows the New Testament to speak authoritatively in Christian religion in an age of critical, historical awareness. After classifying Schleiermacher’s position in a typology of the doctrine of biblical authority, this dissertation explores his conception of divine revelation and inspiration vis-à-vis scripture. It demonstrates that although he did not believe there is warrant for the claim of a direct connection between divine revelation and scripture, or that scripture is the foundation of faith, he nonetheless asserted that the New Testament is authoritative. He asserted the normative authority of the New Testament on the basis that it is the first presentation of Christian faith. This dissertation examines Schleiermacher’s “canon within the canon,” as well as his denial that the Old Testament shares the same normative worth and inspiration of the New. Although this dissertation finds difficulty with some of Schleiermacher’s views regarding the Old Testament, it names two significant strengths of what is identified as his evangelical, content-based, and rationalist approach to biblical authority. First, it recognizes and values the co-presence and co-activity of the supernatural and the natural !ii in the production of the New Testament canon. This allows both scripture and the church to share religious authority. Second, it allows Christian faith and the historical-method to coexist, as it does not require people to contradict what they know to be the case about science, history, and philosophy. Thus, this dissertation asserts that Schleiermacher’s understanding of biblical authority is a robust one, since, for him, the authority of scripture does not lie in some property of the texts themselves that historians or unbelievers can take away.
Resumo:
Soil erosion is a naturally occurring process that involves the detachment, transport, and deposition of soil particles. Disturbances such as thinning and wildfire can reduce cover greatly and increase erosion rates. Forest managers may use erosion prediction tools, such as the Universal Soil Loss Equation (USLE) and Water Erosion Prediction Project (WEPP) to estimate erosion rates and develop techniques to manage erosion. However, it is important to understand the differences and the applications of each model. Erosion rates were generated by each model and the model most applicable to the study site, Los Alamos, New Mexico was determined. It was also used to find the amount of cover needed to stabilize soil. The USLE is a simpler model and less complicated than a computer model like WEPP, and thus easier to manipulate to estimate cover values. Predicted cover values were compared to field cover values. Cover is necessary to establish effective erosion control guidelines.
Resumo:
Understanding spatial distributions and how environmental conditions influence catch-per-unit-effort (CPUE) is important for increased fishing efficiency and sustainable fisheries management. This study investigated the relationship between CPUE, spatial factors, temperature, and depth using generalized additive models. Combinations of factors, and not one single factor, were frequently included in the best model. Parameters which best described CPUE varied by geographic region. The amount of variance, or deviance, explained by the best models ranged from a low of 29% (halibut, Charlotte region) to a high of 94% (sablefish, Charlotte region). Depth, latitude, and longitude influenced most species in several regions. On the broad geographic scale, depth was associated with CPUE for every species, except dogfish. Latitude and longitude influenced most species, except halibut (Areas 4 A/D), sablefish, and cod. Temperature was important for describing distributions of halibut in Alaska, arrowtooth flounder in British Columbia, dogfish, Alaska skate, and Aleutian skate. The species-habitat relationships revealed in this study can be used to create improved fishing and management strategies.