3 resultados para Codium fragile

em Digital Commons @ DU | University of Denver Research


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is the most common form of inherited mental retardation in humans. FXS is caused by loss of the Fragile X Mental Retardation Protein (FMRP), an important regulator of neuronal mRNA translation. Patients with FXS display cognitive deficits including memory problems. Protein synthesis-dependent long-term changes in synaptic plasticity are involved in the establishment and maintenance of long-term memory. One prevalent theory of FXS pathology predicts that FMRP is required to negatively regulate the translation of important mRNAs at the synapse. We are investigating microRNAs (miRNAs) as a potential regulator of synaptic FMRP-regulated mRNAs that have previously been described as being crucial to the process of synaptic plasticity. The general hypothesis underlying this thesis is that FMRP may negatively regulate the expression of futsch (the Drosophila homologue of the microtubule-associated protein gene MAP1B) via the miRNA pathway. The first step we took in testing this hypothesis was to confirm that futsch is subject to miRNA-mediated translational control. Using in silico target analysis, we predicted that several neuronally expressed miRNAs target the futsch mRNA 3'UTR and repress expression of Futsch protein. Then, using an in vitro luciferase reporter system, we showed that miR-315 and members of the miR-9 family selectively down-regulated futsch reporter translation. We have confirmed by site- directed mutagenesis that the miRNA interaction with the futsch 3'UTR is specific to the miRNA seed region binding site. Interestingly, reduction of FMRP levels by RNAi had no effect on futsch 3'UTR reporter expression. Together, these data suggest regulation of futsch expression by the miRNA pathway might be independent of FMRP activity. However, additional experiments need to be completed to confirm these preliminary results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With advances in drug research, the use of biological therapeutics is becoming a reality. Unfortunately, methods for processing and delivering these fragile macromolecules often limit their therapeutic potential. For this dissertation, we explore the aerosolization of macromolecules by way of electrohydrodynamic atomization (EHDA) and how this method can be used to process and deliver therapeutics. EHDA employs a high voltage to break a column of liquid into drops. It was unknown if or how the residual charge left of the resulting droplets would affect lung cells. An in vitro experiment was conducted to spray aerosolized DNA, by way of EHDA, onto human derived lungs cells to test for immunogenic and toxic effects. The lung cells displayed no immunogenic or toxic response to the DNA or high voltage. Previous researchers have used EHDA to aerosolize proteins with mixed results. This work sets forth a simplified thermodynamic theory and provides recommendations to pharmaceutical companies on how to design more stable protein formulations for aerosol processing or delivery. Finally, a new method of producing liposomes was created. It constructs the liposome one layer at a time. The inside of the liposome is sprayed by EHDA, with the lipid and drug in solution together. As the sprayed monolayer passes through a pool containing a solution of lipid in water, the second part of the bilayer attaches to the inner layer creating a complete bilayer liposome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-transcriptional regulation of mRNA is facilitated by different mechanisms, such as microRNA (miRNA) induced gene silencing or fragile X mental retardation protein (FMRP) mediated repression either independent of or acting through cytoplasmic RNA Processing bodies (P bodies). DPTP99A, Lar, and Wg have known functions during synaptogenesis and may be targets of miR-8. Here, we provide evidence that miR-8 regulates DPTP99A in vitro. Non-endogenous miR-8 expressed using an UAS driver regulates Lar. Endogenous miR-8 may regulate DPTP99A in vivo. Here we show that FMRP is capable of colocalizing with the P body components: DCP1, HPat, and Me31B, but not CCR4. We also show that RNAi against HPat and Me31B but not CCR4 and DCP1 are required for FMRP’s repression of a translational reporter in vivo. This functional analysis provides additional insight into another aspect of FMRP’s and P bodies’ ability to cooperatively control repression of mRNA targets.