4 resultados para Brain-based
em Digital Commons @ DU | University of Denver Research
Resumo:
Brain injury is the leading cause of disability and death in children in the United States. Student re-entry into the school setting following a traumatic brain injury is crucial to student success. Multidisciplinary teams within the school district comprised of individuals with expertise in brain injury are ideal in implementing student specific treatment plans given their specialized training and wide range of expertise addressing student needs. Therefore, the purpose of this study is to develop and initially validate a quantitative instrument that school personnel can use to determine if a student, identified as having a traumatic brain injury, will benefit from district-level consultation from a brain injury team. Three studies were designed to investigate the research questions. In study one, the planning and construction of the DORI-TBI was completed. Study two addressed the content validity of the DORI-TBI through a comparison analysis with other referral forms, content review with experts in the field of TBI, and cognitive interviews with professionals to test the usability of the new screening tool. In study three, a field administration was conducted using vignettes to measure construct validity. Results produced a valid and reliable new screening instrument that can aid school-based teams to more efficiently utilize district level consultation with a brain injury support team.
Resumo:
Although initially conceived as providing simply the preventive portion of an extended continuum of care for veterans, the Driving Under the Influence (DUI) program has turned out to be an important outreach service for active duty or recently discharged OEF/OIF (Operation Enduring Freedom/Operation Iraqi Freedom) veterans. Veterans receive empirically-based, state-mandated education and therapy under the only Department of Veterans Affairs (VA) - sponsored DUI program in the State of Colorado, with the advantage of having providers who are sensitive to symptoms of Post-Traumatic Stress Disorder (PTSD) and other relevant diagnoses specific to this population, including Traumatic Brain Injury (TBI). In this paper, the rapid growth of this program is described, as well as summary data regarding the completion, discontinuation, and augmentation of services from the original referral concern. Key results indicated that for nearly one third (31.9%) of the OEF/OIF veterans who were enrolled in the DUI program, this was their initial contact with the VA health care system. Furthermore, following their enrollment in the DUI program, more than one fourth (27.6%) were later referred to and attended other VA programs including PTSD rehabilitation and group therapy, anger management, and intensive inpatient or outpatient dual diagnosis programs. These and other findings from this study suggest that the DUI program may be an effective additional pathway for providing treatment that is particularly salient to the distinctive OEF/OIF population; one that may also result in earlier intervention for problem drinking and other problems related to combat. Relevant conclusions discussed herein primarily aim to improve providers' understanding of effective outreach, and to enhance the appropriate linkages between OEF/OIF veterans and existing VA services.
Resumo:
Electroencephalographic (EEG) signals of the human brains represent electrical activities for a number of channels recorded over a the scalp. The main purpose of this thesis is to investigate the interactions and causality of different parts of a brain using EEG signals recorded during a performance subjects of verbal fluency tasks. Subjects who have Parkinson's Disease (PD) have difficulties with mental tasks, such as switching between one behavior task and another. The behavior tasks include phonemic fluency, semantic fluency, category semantic fluency and reading fluency. This method uses verbal generation skills, activating different Broca's areas of the Brodmann's areas (BA44 and BA45). Advanced signal processing techniques are used in order to determine the activated frequency bands in the granger causality for verbal fluency tasks. The graph learning technique for channel strength is used to characterize the complex graph of Granger causality. Also, the support vector machine (SVM) method is used for training a classifier between two subjects with PD and two healthy controls. Neural data from the study was recorded at the Colorado Neurological Institute (CNI). The study reveals significant difference between PD subjects and healthy controls in terms of brain connectivities in the Broca's Area BA44 and BA45 corresponding to EEG electrodes. The results in this thesis also demonstrate the possibility to classify based on the flow of information and causality in the brain of verbal fluency tasks. These methods have the potential to be applied in the future to identify pathological information flow and causality of neurological diseases.
Resumo:
Deep brain stimulation (DBS) provides significant therapeutic benefit for movement disorders such as Parkinson’s disease (PD). Current DBS devices lack real-time feedback (thus are open loop) and stimulation parameters are adjusted during scheduled visits with a clinician. A closed-loop DBS system may reduce power consumption and side effects by adjusting stimulation parameters based on patient’s behavior. Thus behavior detection is a major step in designing such systems. Various physiological signals can be used to recognize the behaviors. Subthalamic Nucleus (STN) Local field Potential (LFP) is a great candidate signal for the neural feedback, because it can be recorded from the stimulation lead and does not require additional sensors. This thesis proposes novel detection and classification techniques for behavior recognition based on deep brain LFP. Behavior detection from such signals is the vital step in developing the next generation of closed-loop DBS devices. LFP recordings from 13 subjects are utilized in this study to design and evaluate our method. Recordings were performed during the surgery and the subjects were asked to perform various behavioral tasks. Various techniques are used understand how the behaviors modulate the STN. One method studies the time-frequency patterns in the STN LFP during the tasks. Another method measures the temporal inter-hemispheric connectivity of the STN as well as the connectivity between STN and Pre-frontal Cortex (PFC). Experimental results demonstrate that different behaviors create different m odulation patterns in STN and it’s connectivity. We use these patterns as features to classify behaviors. A method for single trial recognition of the patient’s current task is proposed. This method uses wavelet coefficients as features and support vector machine (SVM) as the classifier for recognition of a selection of behaviors: speech, motor, and random. The proposed method is 82.4% accurate for the binary classification and 73.2% for classifying three tasks. As the next step, a practical behavior detection method which asynchronously detects behaviors is proposed. This method does not use any priori knowledge of behavior onsets and is capable of asynchronously detect the finger movements of PD patients. Our study indicates that there is a motor-modulated inter-hemispheric connectivity between LFP signals recorded bilaterally from STN. We utilize a non-linear regression method to measure this inter-hemispheric connectivity and to detect the finger movements. Our experimental results using STN LFP recorded from eight patients with PD demonstrate this is a promising approach for behavior detection and developing novel closed-loop DBS systems.