4 resultados para weyl tensor
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Lovelock terms are polynomial scalar densities in the Riemann curvature tensor that have the remarkable property that their Euler-Lagrange derivatives contain derivatives of the metric of an order not higher than 2 (while generic polynomial scalar densities lead to Euler-Lagrange derivatives with derivatives of the metric of order 4). A characteristic feature of Lovelock terms is that their first nonvanishing term in the expansion g λμ = η λμ + h λμ of the metric around flat space is a total derivative. In this paper, we investigate generalized Lovelock terms defined as polynomial scalar densities in the Riemann curvature tensor and its covariant derivatives (of arbitrarily high but finite order) such that their first nonvanishing term in the expansion of the metric around flat space is a total derivative. This is done by reformulating the problem as a BRST cohomological one and by using cohomological tools. We determine all the generalized Lovelock terms. We find, in fact, that the class of nontrivial generalized Lovelock terms contains only the usual ones. Allowing covariant derivatives of the Riemann tensor does not lead to a new structure. Our work provides a novel algebraic understanding of the Lovelock terms in the context of BRST cohomology. © 2005 IOP Publishing Ltd.
Resumo:
Using BRST-cohomological techniques, we analyze the consistent deformations of theories describing free tensor gauge fields whose symmetries are represented by Young tableaux made of two columns of equal length p, p > 1. Under the assumptions of locality and Poincaré invariance, we find that there is no consistent deformation of these theories that non-trivially modifies the gauge algebra and/or the gauge transformations. Adding the requirement that the deformation contains no more than two derivatives, the only possible deformation is a cosmological-constant-like term. © SISSA/ISAS 2004.
Resumo:
We investigate the problem of introducing consistent self-couplings in free theories for mixed tensor gauge fields whose symmetry properties are characterized by Young diagrams made of two columns of arbitrary (but different) lengths. We prove that, in flat space, these theories admit no local, Poincaré-invariant, smooth, selfinteracting deformation with at most two derivatives in the Lagrangian. Relaxing the derivative and Lorentz-invariance assumptions, there still is no deformation that modifies the gauge algebra, and in most cases no deformation that alters the gauge transformations. Our approach is based on a Becchi-Rouet-Stora-iyutin (BRST) -cohomology deformation procedure. © 2005 American Institute of Physics.
Resumo:
We study the problem of consistent interactions for spin-3 gauge fields in flat spacetime of arbitrary dimension 3$">n>3. Under the sole assumptions of Poincaré and parity invariance, local and perturbative deformation of the free theory, we determine all nontrivial consistent deformations of the abelian gauge algebra and classify the corresponding deformations of the quadratic action, at first order in the deformation parameter. We prove that all such vertices are cubic, contain a total of either three or five derivatives and are uniquely characterized by a rank-three constant tensor (an internal algebra structure constant). The covariant cubic vertex containing three derivatives is the vertex discovered by Berends, Burgers and van Dam, which however leads to inconsistencies at second order in the deformation parameter. In dimensions 4$">n>4 and for a completely antisymmetric structure constant tensor, another covariant cubic vertex exists, which contains five derivatives and passes the consistency test where the previous vertex failed. © SISSA 2006.