2 resultados para three-dimensional

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. In clinical practice and in clinical trials, echocardiography and scintigraphy are used the most for the evaluation of global left ejection fraction (LVEF) and left ventricular (LV) volumes. Actually, poor quality imaging and geometrical assumptions are the main limitations of LVEF measured by echocardiography. Contrast agents and 3D echocardiography are new methods that may alleviate these potential limitations. Methods. Therefore we sought to examine the accuracy of contrast 3D echocardiography for the evaluation of LV volumes and LVEF relative to MIBI gated SPECT as an independent reference. In 43 patients addressed for chest pain, contrast 3D echocardiography (RT3DE) and MIBI gated SPECT were prospectively performed on the same day. The accuracy and the variability of LV volumes and LVEF measurements were evaluated. Results. Due to good endocardial delineation, LV volumes and LVEF measurements by contrast RT3DE were feasible in 99% of the patients. The mean LV end-diastolic volume (LVEDV) of the group by scintigraphy was 143 65 mL and was underestimated by triplane contrast RT3DE (128 60 mL; p < 0.001) and less by full-volume contrast RT3DE (132 62 mL; p < 0.001). Limits of agreement with scintigraphy were similar for triplane andfull-volume, modalities with the best results for full-volume. Results were similar for calculation of LV end-systolic volume (LVESV). The mean LVEF was 44 16% with scintigraphy and was not significantly different with both triplane contrast RT3DE (45 15%) and full-volume contrast RT3DE (45 15%). There was an excellent correlation between two different observers for LVEDV, LVESV and LVEF measurements and inter observer agreement was also good for both contrast RT3DE techniques. Conclusion. Contrast RT3DE allows an accurate assessment of LVEF compared to the LVEF measured by SPECT, and shows low variability between observers. Although RT3DE triplane provides accurate evaluation of left ventricular function, RT3DE full-volume is superior to triplane modality in patients with suspected coronary artery disease. © 2009 Cosyns et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interfacial waves on the surface of a falling liquid film are known to modify heat and mass transfer. Under non-isothermal conditions, the wave topology is strongly influenced by the presence of thermocapillary (Marangoni) forces at the interface which leads to a destabilization of the film flow and potentially to critical film thinning. In this context, the present study investigates the evolution of the surface topology and the evolution of the surface temperature for the case of regularly excited solitary-type waves on a falling liquid film under the influence of a wall-side heat flux. Combining film thickness (chromatic confocal imaging) and surface temperature information (infrared thermography), interactions between hydrodynamics and thermocapillary forces are revealed. These include the formation of rivulets, film thinning and wave number doubling in spanwise direction. Distinct thermal structures on the films’ surface can be associated to characteristics of the surface topology.