7 resultados para rotating cosmology
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We consider different types of fractional branes on a Z2 orbifold of the conifold and analyze in detail the corresponding gauge/gravity duality. The gauge theory possesses a rich and varied dynamics, both in the UV and in the IR. We find the dual supergravity solution, which contains both untwisted and twisted 3-form fluxes, related to what are known as deformation and N=2 fractional branes, respectively. We analyze the resulting renormalization group flow from the supergravity perspective, by developing an algorithm to easily extract it. We find hints of a generalization of the familiar cascade of Seiberg dualities due to a nontrivial interplay between the different types of fractional branes. We finally consider the IR behavior in several limits, where the dominant effective dynamics is either confining in a Coulomb phase or runaway, and discuss the resolution of singularities in the dual geometric background. © 2008 The American Physical Society.
Resumo:
We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUT solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses. © 2006 The American Physical Society.
Resumo:
The problem of constructing consistent parity-violating interactions for spin-3 gauge fields is considered in Minkowski space. Under the assumptions of locality, Poincaré invariance, and parity noninvariance, we classify all the nontrivial perturbative deformations of the Abelian gauge algebra. In space-time dimensions n=3 and n=5, deformations of the free theory are obtained which make the gauge algebra non-Abelian and give rise to nontrivial cubic vertices in the Lagrangian, at first order in the deformation parameter g. At second order in g, consistency conditions are obtained which the five-dimensional vertex obeys, but which rule out the n=3 candidate. Moreover, in the five-dimensional first-order deformation case, the gauge transformations are modified by a new term which involves the second de Wit-Freedman connection in a simple and suggestive way. © 2006 The American Physical Society.
Resumo:
SCOPUS: er.j
Resumo:
Motivated by the Minimal Dark Matter scenario, we consider the annihilation into gamma rays of candidates in the fermionic 5-plet and scalar 7-plet representations of SU(2)L, taking into account both the Sommerfeld effect and the internal bremsstrahlung. Assuming the Einasto profile, we show that present measurements of the Galactic Center by the H.E.S.S. instrument exclude the 5-plet and 7-plet as the dominant form of dark matter for masses between 1 TeV and 20 TeV, in particular, the 5-plet mass leading to the observed dark matter density via thermal freeze-out. We also discuss prospects for the upcoming Cherenkov Telescope Array, which will be able to probe even heavier dark matter masses, including the scenario where the scalar 7-plet is thermally produced.
Resumo:
We study the mixing of the scalar glueball into the isosinglet mesons f0(1370), f0(1500), and f0(1710) to describe the two-body decays to pseudoscalars. We use an effective Hamiltonian and employ the two-angle mixing scheme for η and η′. In this framework, we analyze existing data and look forward to new data into η and η′ channels. For now, the f0(1710) has the largest glueball component and a sizable branching ratio into ηη′, testable at BESIII.
Resumo:
This paper describes the first measurement of b-quark fragmentation fractions into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result is based on a 360pb-1 sample of data collected with the CDF II detector in pp̄ collisions at s=1.96TeV. Semileptonic decays of B̄0, B-, and B̄s0 mesons, as well as Λb0 baryons, are reconstructed. For an effective bottom hadron pT threshold of 7GeV/c, the fragmentation fractions are measured to be fu/fd=1.054±0.018(stat)-0.045+0.025(sys)±0. 058(B), fs/(fu+fd)=0.160±0.005(stat)-0.010+0.011(sys)-0.034+0.057(B), and fΛb/(fu+fd)=0.281±0.012(stat)-0.056+0.058(sys)-0.087+0.128(B), where the uncertainty B is due to uncertainties on measured branching ratios. The value of fs/(fu+fd) agrees within one standard deviation with previous CDF measurements and the world average of this quantity, which is dominated by LEP measurements. However, the ratio fΛb/(fu+fd) is approximately twice the value previously measured at LEP. The approximately 2σ discrepancy is examined in terms of kinematic differences between the two production environments. © 2008 The American Physical Society.