3 resultados para peroxide dismutase

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immobilisation of molybdate on Mg,Al-LDH leads to an active, heterogeneous catalyst that generates singlet molecular oxygen from hydrogen peroxide in the absence of soluble base

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After a finite doubling number, normal cells become senescent, i.e. nonproliferating and apoptosis resistant. Because Rel/nuclear factor (NF)-κB transcription factors regulate both proliferation and apoptosis, we have investigated their involvement in senescence. cRel overexpression in young normal keratinocytes results in premature senescence, as defined by proliferation blockage, apoptosis resistance, enlargement, and appearance of senescence-associated β-galactosidase (SA-β-Gal) activity. Normal senescent keratinocytes display a greater endogenous Rel/NF-κB DNA binding activity than young cells; inhibiting this activity in presenescent cells decreases the number of cells expressing the SA-β-Gal marker. Normal senescent keratinocytes and cRel-induced premature senescent keratinocytes overexpressed manganese superoxide dismutase (MnSOD), a redox enzyme encoded by a Rel/NF-κB target gene. MnSOD transforms the toxic O2.- into H2O2, whereas catalase and glutathione peroxidase convert H2O2 into H2O. Neither catalase nor glutathione peroxidase is up-regulated during cRel-induced premature senescence or during normal senescence, suggesting that H 2O2 accumulates. Quenching H2O2 by catalase delays the occurrence of both normal and premature cRel-induced senescence. Conversely, adding a nontoxic dose of H2O2 to the culture medium of young normal keratinocytes induces a premature senescence-like state. All these results indicate that Rel/NF-κB factors could take part in the occurrence of senescence by generating an oxidative stress via the induction of MnSOD.