5 resultados para object representations

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A regularized algorithm for the recovery of band-limited signals from noisy data is described. The regularization is characterized by a single parameter. Iterative and non-iterative implementations of the algorithm are shown to have useful properties, the former offering the advantage of flexibility and the latter a potential for rapid data processing. Comparative results, using experimental data obtained in laser anemometry studies with a photon correlator, are presented both with and without regularization. © 1983 Taylor & Francis Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is carried out, using the prolate spheroidal wave functions, of certain regularized iterative and noniterative methods previously proposed for the achievement of object restoration (or, equivalently, spectral extrapolation) from noisy image data. The ill-posedness inherent in the problem is treated by means of a regularization parameter, and the analysis shows explicitly how the deleterious effects of the noise are then contained. The error in the object estimate is also assessed, and it is shown that the optimal choice for the regularization parameter depends on the signal-to-noise ratio. Numerical examples are used to demonstrate the performance of both unregularized and regularized procedures and also to show how, in the unregularized case, artefacts can be generated from pure noise. Finally, the relative error in the estimate is calculated as a function of the degree of superresolution demanded for reconstruction problems characterized by low space–bandwidth products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the problems of object restoration and image extrapolation, according to the regularization theory of improperly posed problems. In order to take into account the stochastic nature of the noise and to introduce the main concepts of information theory, great attention is devoted to the probabilistic methods of regularization. The kind of the restored continuity is investigated in detail; in particular we prove that, while the image extrapolation presents a Hölder type stability, the object restoration has only a logarithmic continuity. © 1979 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new formulation of Miller's regularization theory, which is particularly suitable for object restoration problems. By means of simple geometrical arguments, we obtain upper and lower bounds for the errors on regularized solutions. This leads to distinguish between ' Holder continuity ' which is quite good for practical computations and ` logarithmic continuity ' which is very poor. However, in the latter case, one can reconstruct local weighted averages of the solution. This procedure allows for precise valuations of the resolution attainable in a given problem. Numerical computations, made for object restoration beyond the diffraction limit in Fourier optics, show that, when logarithmic continuity holds, the resolution is practically independent of the data noise level. © 1980 Taylor & Francis Group, LLC.