2 resultados para motion control
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Context. This paper is the last in a series devoted to the analysis of the binary content of the Hipparcos Catalogue. Aims. The comparison of the proper motions constructed from positions spanning a short (Hipparcos) or long time (Tycho-2) makes it possible to uncover binaries with periods of the order of or somewhat larger than the short time span (in this case, the 3 yr duration of the Hipparcos mission), since the unrecognised orbital motion will then add to the proper motion. Methods. A list of candidate proper motion binaries is constructed from a carefully designed χ2 test evaluating the statistical significance of the difference between the Tycho-2 and Hipparcos proper motions for 103 134 stars in common between the two catalogues (excluding components of visual systems). Since similar lists of proper-motion binaries have already been constructed, the present paper focuses on the evaluation of the detection efficiency of proper-motion binaries, using different kinds of control data (mostly radial velocities). The detection rate for entries from the Ninth Catalogue of Spectroscopic Binary Orbits (SB9) is evaluated, as well as for stars like barium stars, which are known to be all binaries, and finally for spectroscopic binaries identified from radial velocity data in the Geneva-Copenhagen survey of F and G dwarfs in the solar neighbourhood. Results. Proper motion binaries are efficiently detected for systems with parallaxes in excess of ∼20 mas, and periods in the range 1000-30 000 d. The shortest periods in this range (1000-2000 d, i.e. once to twice the duration of the Hipparcos mission) may appear only as DMSA/G binaries (accelerated proper motion in the Hipparcos Double and Multiple System Annex). Proper motion binaries detected among SB9 systems having periods shorter than about 400 d hint at triple systems, the proper-motion binary involving a component with a longer orbital period. A list of 19 candidate triple systems is provided. Binaries suspected of having low-mass (brown-dwarf-like) companions are listed as well. Among the 37 barium stars with parallaxes larger than 5 mas, only 7 exhibit no evidence for duplicity whatsoever (be it spectroscopic or astrometric). Finally, the fraction of proper-motion binaries shows no significant variation among the various (regular) spectral classes, when due account is taken for the detection biases. © ESO 2007.
Resumo:
Background: Cervicocephalic kinesthetic deficiencies have been demonstrated in patients with chronic neck pain (NP). On the other hand, authors emphasized the use of different motion speeds for assessing functional impairment of the cervical spine. Purpose: The objectives of this study were (1) to investigate the head repositioning accuracy in NP patients and control subjects and (2) to assess the influence of target distance, motion speed, motion direction and pain. Materials and methods: Seventy-one subjects (36 healthy subjects and 35 NP patients; age 30–55 years) performed the head repositioning test (HRT) at two different speeds for horizontal and vertical movements and at two different distances. For each condition, six consecutive trials were sampled. Results: The study showed the validity and reproducibility of the HRT, confirming a dysfunctional threshold of 4.5°. Normative values of head repositioning error up to 3.6° and 7.1° were identified for healthy and NP subjects, respectively. A distance of 180 cm from the target and a natural motion speed increased HRT accuracy. Repositioning after extension movement showed a significantly larger error in both groups. Intensity, duration of pain as well as pain level did not significantly alter head repositioning error. Conclusions: The assessment of proprioceptive performance in healthy and NP subjects allowed the validation of the HRT. The HRT is a simple, not expensive and fast test, easily implementable in daily practice to assess and monitor treatment and evolution of proprioceptive cervical deficits.