2 resultados para minimal spanning tree
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
An extended formulation of a polyhedron P is a linear description of a polyhedron Q together with a linear map π such that π(Q)=P. These objects are of fundamental importance in polyhedral combinatorics and optimization theory, and the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in J Comput Syst Sci 43(3):441–466, 1991) provides a surprising connection between extended formulations and communication complexity, showing that the smallest size of an extended formulation of $$P$$P equals the nonnegative rank of its slack matrix S. Moreover, Yannakakis also shows that the nonnegative rank of S is at most 2c, where c is the complexity of any deterministic protocol computing S. In this paper, we show that the latter result can be strengthened when we allow protocols to be randomized. In particular, we prove that the base-2 logarithm of the nonnegative rank of any nonnegative matrix equals the minimum complexity of a randomized communication protocol computing the matrix in expectation. Using Yannakakis’ factorization theorem, this implies that the base-2 logarithm of the smallest size of an extended formulation of a polytope P equals the minimum complexity of a randomized communication protocol computing the slack matrix of P in expectation. We show that allowing randomization in the protocol can be crucial for obtaining small extended formulations. Specifically, we prove that for the spanning tree and perfect matching polytopes, small variance in the protocol forces large size in the extended formulation.
Resumo:
Motivated by the Minimal Dark Matter scenario, we consider the annihilation into gamma rays of candidates in the fermionic 5-plet and scalar 7-plet representations of SU(2)L, taking into account both the Sommerfeld effect and the internal bremsstrahlung. Assuming the Einasto profile, we show that present measurements of the Galactic Center by the H.E.S.S. instrument exclude the 5-plet and 7-plet as the dominant form of dark matter for masses between 1 TeV and 20 TeV, in particular, the 5-plet mass leading to the observed dark matter density via thermal freeze-out. We also discuss prospects for the upcoming Cherenkov Telescope Array, which will be able to probe even heavier dark matter masses, including the scenario where the scalar 7-plet is thermally produced.