3 resultados para mediators, NO

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin (IL)-10, a potent anti-inflammatory cytokine, limits the severity of acute pancreatitis and downregulates transforming growth factor (TGF)-beta release by inflammatory cells on stimulation. Proinflammatory mediators, reactive oxygen species, and TGF-beta can activate pancreatic stellate cells and their synthesis of collagen I and III. This study evaluates the role of endogenous IL-10 in the modulation of the regeneration phase following acute pancreatitis and in the development of pancreatic fibrosis. IL-10 knockout (KO) mice and their C57BL/6 controls were submitted to repeated courses (3/wk, during 6 wk, followed by 1 wk of recovery) of cerulein-induced acute pancreatitis. TGF-beta(1) release was measured on plasma, and its pancreatic expression was assessed by quantitative RT-PCR and immunohistochemistry. Intrapancreatic IL-10 gene expression was assessed by semiquantitative RT-PCR, and intrapancreatic collagen content was assessed by picrosirius staining. Activated stellate cells were detected by immunohistochemistry. S phase intrapancreatic cells were marked using tritiated thymidine labeling. After repeated acute pancreatitis, IL-10 KO mice had more severe histological lesions and fibrosis (intrapancreatic collagen content) than controls. TGF-beta(1) plasma levels, intrapancreatic transcription, and expression by ductal and interstitial cells, as well as the number of activated stellate cells, were significantly higher. IL-10 KO mice disclosed significantly fewer acinar cells in S phase, whereas the opposite was observed for pseudotubular cells. Endogenous IL-10 controls the regeneration phase and limits the severity of fibrosis and glandular atrophy induced by repeated episodes of acute pancreatitis in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type II alveolar epithelial cells (AECII) are well known for their role in the innate immune system. More recently, it was proposed that they could play a role in the antigen presentation to T lymphocytes but contradictory results have been published both concerning their surface expressed molecules and the T lymphocyte responses in mixed lymphocyte cultures. The use of either AECII cell line or fresh cells could explain the observed discrepancies. Thus, this study aimed at defining the most relevant model of accessory antigen presenting cells by carefully comparing the two models for their expression of surface molecules necessary for efficient antigen presentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P-glycoprotein (P-gp) is one of the best-known mediators of drug efflux-based multidrug resistance in many cancers. This validated therapeutic target is a prototypic, plasma membrane resident ATPBinding Cassette transporter that pumps xenobiotic compounds out of cells. The large, polyspecific drug-binding pocket of P-gp recognizes a variety of structurally unrelated compounds. The transport of these drugs across the membrane is coincident with changes in the size and shape of this pocket during the course of the transport cycle. Here, we present the crystal structures of three inward-facing conformations of mouse P-gp derived from two different crystal forms. One structure has a nanobody bound to the C-terminal side of the first nucleotide-binding domain. This nanobody strongly inhibits the ATP hydrolysis activity of mouse Pgp by hindering the formation of a dimeric complex between the ATP-binding domains, which is essential for nucleotide hydrolysis. Together, these inward-facing conformational snapshots of P-gp demonstrate a range of flexibility exhibited by this transporter, which is likely an essential feature for the binding and transport of large, diverse substrates. The nanobody-bound structure also reveals a unique epitope on P-gp.