3 resultados para kinematics and dynamics

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hyades stream has long been thought to be a dispersed vestige of the Hyades cluster. However, recent analyses of the parallax distribution, of the mass function, and of the action-space distribution of stream stars have shown it to be rather composed of orbits trapped at a resonance of a density disturbance. This resonant scenario should leave a clearly different signature in the element abundances of stream stars than the dispersed cluster scenario, since the Hyades cluster is chemically homogeneous. Here, we study the metallicity as well as the element abundances of Li, Na, Mg, Fe, Zr, Ba, La, Ce, Nd and Eu for a random sample of stars belonging to the Hyades stream, and compare them with those of stars from the Hyades cluster. From this analysis: (i) we independently confirm that the Hyades stream cannot be solely composed of stars originating in the Hyades cluster; (ii) we show thatsomestars (namely 2/21) from the Hyades stream nevertheless have abundances compatible with an origin in the cluster; (iii) we emphasize that the use of Li as a chemical tag of the cluster origin of main-sequence stars is very efficient in the range 5500K ≤Teff≤ 6200K, since the Li sequence in the Hyades cluster is very tight, while at the same time spanning a large abundance range; (iv) we show that, while this evaporated population has a metallicity excess of ~0.2 dex with respect to the local thin-disc population, identical to that of the Hyades cluster, the remainder of the Hyades stream population has still a metallicity excess of ~0.06-0.15 dex, consistent with an origin in the inner Galaxy and (v) we show that the Hyades stream can be interpreted as an inner 4:1 resonance of the spiral pattern: this then also reproduces an orbital family compatible with the Sirius stream, and places the origin of the Hyades stream up to 1kpc inwards from the solar radius, which might explain the observed metallicity excess of the stream population. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (<100 μm) from different volcanoes were measured for their specific surface area, as, porosity and water adsorption properties with the aim to provide insights into the capacity of silicate ash particles to react with gases, including water vapour. To do so, we performed high-resolution nitrogen and water vapour adsorption/desorption experiments at 77 K and 303 K, respectively. The nitrogen data indicated as values in the range 1.1-2.1 m2/g, except in one case where as of 10 m2/g was measured. This high value is attributed to incorporation of hydrothermal phases, such as clay minerals, in the ash surface composition. The data also revealed that the ash samples are essentially non-porous, or have a porosity dominated by macropores with widths >500 Å All the specimens had similar pore size distributions, with a small peak centered around 50 Å These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ∼10-2 g. Some volcanic implications of this study are discussed. © Springer-Verlag 2004.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Droplet size and dynamics of blended palm oil-based fatty acid methyl ester (FAME) and diesel oil spray were mechanistically investigated using a phase Doppler anemometry. A two-fluid atomizer was applied for dispersing viscous blends of blended biodiesel oil with designated flow rates. It was experimentally found that the atomizer could generate a spray with large droplets with Sauter mean diameters of ca. 30 mm at low air injection pressure. Such large droplets traveled with a low velocity along their trajectory after emerging from the nozzle tip. The viscosity of blended biodiesel could significantly affect the atomizing process, resulting in the controlled droplet size distribution. Blended biodiesel with a certain fraction of palm oil-based FAME would be consistently atomized owing to its low viscosity. However, the viscosity could exert only a small effect on the droplet velocity profile with the air injection pressure higher than 0.2 MPa.