10 resultados para kennis van rekenen-wiskunde
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
A slit nozzle supersonic expansion containing C2H2 (246 sccm) and N2O (355 sccm) seeded into Ar (1260 sccm) is investigated using CW cavity ring-down spectroscopy, in the 1.5 μm range. The C2H2-N2O van der Waals complex is observed around the 2CH acetylenic band. Despite strong perturbations, 117 b-type lines are assigned. Their combined fit with published microwave data leads to new upper state and improved lower state rotational constants. The Lorentzian width of the assigned line profiles sets the mean lifetime to 1.6 ns. The rotational temperature is estimated to be 15 K from the comparison between observed and simulated spectra. © 2008 Elsevier B.V. All rights reserved.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
New theoretical and experimental results on the acetylene-Ar van der Waals complex are presented and the literature is reviewed. New ab initio calculations at the MP2 level were performed using large basis sets with diffuse functions and taking into account the basis set superposition error. It was found that the structure of acetylene is not significantly altered by the complexation and that its vibrational frequencies are only slightly lowered. Finally, it was observed that the calculated properties of the complex (structure, vibrational spectrum, bond dissociation energy) are not sensitive to the structure imposed on acetylene. Experimentally, acetylene-Ar was produced in a supersonic expansion under experimental conditions corresponding to 9 K rotational temperature. Thanks to the performances of CW-CRDS detection, the Ka = 0 ← 1, 1 ← 0, and 2 ← 1 sub- bands of the v1 + v3 band could be recorded and resolved and most of their lines assigned. Upper-state rotational constants were fitted, however not including the upper Ka = 2 state, which shows K-doubling the opposite of the expected. The Lorentzian width of most line profiles sets the mean lifetime to some 7.5 ns. Local perturbations affecting line positions and/or line widths are demonstrated. Additional series of lines tentatively attributed to acetylene-Ar are discussed.© 2009 American Chemical Society.
Resumo:
Accurate ab initio intermolecular potential energy surfaces (IPES) have been obtained for the first time for the ground electronic state of the C 2H2-Kr and C2H2-Xe van der Waals complexes. Extensive tests, including complete basis set and all-electron scalar relativistic results, support their calculation at the CCSD(T) level of theory, using small-core relativistic pseudopotentials for the rare-gas atoms and aug-cc-pVQZ basis sets extended with a set of 3s3p2d1f1g mid-bond functions. All results are corrected for the basis set superposition error. The importance of the scalar relativistic and rare-gas outer-core (n.1)d correlation effects is investigated. The calculated IPES, adjusted to analytical functions, are characterized by global minima corresponding to skew T-shaped geometries, in which the Jacobi vector positioning the rare-gas atom with respect to the center of mass of the C2H2 moiety corresponds to distances of 4.064 and 4.229Å, and angles of 65.22° and 68.67° for C 2H2-Kr and C2H2-Xe, respectively. The interaction energy of both complexes is estimated to be -151.88 (1.817 kJ mol-1) and -182.76 cm-1 (2.186 kJ mol-1), respectively. The evolution of the topology of the IPES as a function of the rare-gas atom, from He to Xe, is also discussed. © 2012 Taylor and Francis.