12 resultados para indigestible fiber
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The generation of a spatially single-mode white-light supercontinuum has been observed in a photonic crystal fiber pumped with 60-ps pulses of subkilowatt peak power. The spectral broadening is identified as being due to the combined action of stimulated Raman scattering and parametric four-wave-mixing generation, with a negligible contribution from the self-phase modulation of the pump pulses. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers. © 2001 Optical Society of America.
Resumo:
The compression properties of octave-spanning supercontinuum spectra generated in photonic crystal fibers are studied using stochastic nonlinear Schrödinger equation simulations. The conditions under which sub-5 fs pulses can be obtained after compression are identified. © 2004 Optical Society of America.
Resumo:
The phase coherence of supercontinuum generation in microstructure fiber is quantified by performing a Young's type interference experiment between independently generated supercontinua from two separate fiber segments. Analysis of the resulting interferogram yields the wavelength dependence of the magnitude of the mutual degree of coherence, and a comparison of experimental results with numerical simulations suggests that the primary source of coherence degradation is the technical noise-induced fluctuations in the injected peak power. © 2003 Optical Society of America.
Resumo:
Numerical simulations are used to study the temporal and spectral characteristics of broadband supercontinua generated in photonic crystal fiber. In particular, the simulations are used to follow the evolution with propagation distance of the temporal intensity, the spectrum, and the cross-correlation frequency resolved optical gating (XFROG) trace. The simulations allow several important physical processes responsible for supercontinuum generation to be identified and, moreover, illustrate how the XFROG trace provides an intuitive means of interpreting correlated temporal and spectral features of the supercontinuum. Good qualitative agreement with preliminary XFROG measurements is observed. © 2002 Optical Society of America.
Resumo:
We present experimental and theoretical investigations of the highly nonlinear and broadband noise that exists on supercontinuum spectra generated from launching femtosecond Ti:Sapphire pulses into microstructure fiber.
Resumo:
Supercontinua generated in microstructure fiber can exhibit significant excess amplitude noise. We present experimental and numerical studies of the origins of this excess noise and its dependence on the input laser pulse parameters.
Resumo:
Broadband supercontinuum spectra are generated in a microstructured fiber using femtosecond laser pulses. Noise properties of these spectra are studied through experiments and numerical simulations based on a generalized stochastic nonlinear Schrödinger equation. In particular, the relative intensity noise as a function of wavelength across the supercontinuum is measured over a wide range of input pulse parameters, and experimental results and simulations are shown to be in good quantitative agreement. For certain input pulse parameters, amplitude fluctuations as large as 50% are observed. The simulations clarify that the intensity noise on the supercontinuum arises from the amplification of two noise inputs during propagation - quantum-limited shot noise on the input pulse, and spontaneous Raman scattering in the fiber. The amplification factor is a sensitive function of the input pulse parameters. Short input pulses are critical for the generation of very broad supercontinua with low noise.
Resumo:
0
Resumo:
SCOPUS: er.j
Resumo:
Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50% for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schrödinger equation, finding good quantitative agreement over a range of input-pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input-pulse shot noise and the spontaneous Raman scattering down the fiber.
Resumo:
Thanks to a passive cavity configuration, modulational instability in fibers is successfully observed, for the first time to our knowledge, in the continuous-wave regime. Our technique provides a new means of generating all-optically ultrahigh-repetition-rate pulse trains and opens up new possibilities for the fundamental study of modulational instability and related phenomena. © 2001 Optical Society of America.
Resumo:
info:eu-repo/semantics/published