9 resultados para immunoglobulin class
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
BACKGROUND: Persistent polyclonal B cell lymphocytosis (PPBL) is a rare condition characterized by increased IgM and large excess of B cells with an IgD(+) CD27(+) phenotype. In normal individuals, these cells play a central role in the defense against pneumococcal infection. So far, few studies have characterized humoral immune responses in PPBL patients. We therefore measured IgG directed against S. pneumoniae antigens in a 51 yr-old woman with PPBL before and after vaccination with a pneumococcal 23-valent polysaccharide vaccine. METHODS: Antibodies against pneumococcal antigens were measured first with an overall immunoassay using microplates coated with the 23-valent pneumococcal vaccine. A serotype-specific test was also performed according to the WHO consensus protocol. RESULTS: Despite a large number of IgD(+) CD27(+) cells, our patient had low baseline titers of IgG directed against pneumococcal antigens and did not significantly respond to a 23-valent polysaccharide vaccine against S. pneumoniae. On the contrary, she had good titers of IgG directed against tetanus toxoid. CONCLUSION: IgM(+) IgD(+) CD27(+) cells which accumulate in this patient with typical PPBL patient failed to perform IgG isotype switch after a polysaccharide vaccine. The potential mechanisms and relationships with the main features of PPBL are discussed. Further studies on a larger number of similar patients are needed.
Resumo:
Immunoglobulin superfamily (IgSF) domains are conserved structures present in many proteins in eukaryotes and prokaryotes. These domains are well-capable of facilitating sequence variation, which is most clearly illustrated by the variable regions in immunoglobulins (Igs) and T cell receptors (TRs). We studied an antibody-deficient patient suffering from recurrent respiratory infections and with impaired antibody responses to vaccinations. Patient's B cells showed impaired Ca(2+) influx upon stimulation with anti-IgM and lacked detectable CD19 membrane expression. CD19 sequence analysis revealed a homozygous missense mutation resulting in a tryptophan to cystein (W52C) amino acid change. The affected tryptophan is CONSERVED-TRP 41 located on the C-strand of the first extracellular IgSF domain of CD19 and was found to be highly conserved, not only in mammalian CD19 proteins, but in nearly all characterized IgSF domains. Furthermore, the tryptophan is present in all variable domains in Ig and TR and was not mutated in 117 Ig class-switched transcripts of B cells from controls, despite an overall 10% amino acid change frequency. In vitro complementation studies and CD19 western blotting of patient's B cells demonstrated that the mutated protein remained immaturely glycosylated. This first missense mutation resulting in a CD19 deficiency demonstrates the crucial role of a highly conserved tryptophan in proper folding or stability of IgSF domains.
Resumo:
Hypogammaglobulinemia (hypo-Ig) and low mannose binding protein (MBP) levels might be involved in the infectious risk in renal transplantation. In 152 kidney transplant recipients treated with calcineurin inhibitors (CNI) and mycophenolate mofetil (MMF), during the first year, we prospectively recorded the incidence of hypogammaglobulinemia, and low MBP levels. Their influence on infectious complications was evaluated in 92 patients at 3 and 12 months (T3 and T12). The proportion of deficiency increased significantly: hypo-IgG: 6% (T0), 45% (T3), and 30% (T12) (P < 0.001); hypo-MBP: 5%, 11%, and 12% (P = 0.035). Hypo-IgG at T3 was not associated with an increased incidence of first-year infections. A significantly higher proportion of patients with combined hypogammaglobulinemia [IgG+ (IgA and/or IgM)] at T3 and with isolated hypo-IgG at T0 developed infections until T3 compared with patients free of these deficits (P < 0.05). Low MBP levels at T3 were associated with more sepsis and viral infections. Hypogammaglobulinemia is frequent during the first year after renal transplantation in patients treated with a CNI and MMF. Hypo-IgG at T0 and combined Igs deficts at T3 were associated with more infections. MBP deficiency might emerge as an important determinant of the post-transplant infectious risk.
Resumo:
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by polyclonal B cell activation and by the production of anti-double-stranded (ds) DNA antibodies. Given the inhibitory effects of IL-12 on humoral immune responses, we investigated whether IL-12 displayed such an activity on in vitro immunoglobulin production by SLE PBMC. Spontaneous IgG, IgG1, IgG2, IgG3 and IgM antibody production was dramatically reduced by addition of IL-12. These results were confirmed by Elispot assays detecting IgG- and anti-dsDNA-secreting cells. While IL-6 and TNF titres measured in PBMC supernatants were not modified by addition of IL-12, interferon-gamma (IFN-gamma) titres were up-regulated and IL-10 production down-regulated. Since addition of IFN-gamma did not down-regulate immunoglobulin production and since the inhibitory activity of IL-12 on immunoglobulin synthesis was not suppressed by anti-IFN-gamma antibody, we concluded that the effect of IL-12 on immunoglobulin production was not mediated through IFN-gamma. Our data also argue against the possibility that down-regulation of endogenous IL-10 production was responsible for the effect of IL-12. Thus, inhibition of IL-10 production by IFN-gamma was not accompanied by inhibition of immunoglobulin production, and conversely, restoration of IL-10 production by anti-IFN-gamma antibody did not suppress the inhibitory activity exerted by IL-12 on immunoglobulin production. Taken together, our data indicate that reduction of excessive immunoglobulin and anti-dsDNA antibody production by lupus PBMC can be achieved in vitro by IL-12, independently of IFN-gamma and IL-10 modulation.
Resumo:
Case Reports
Resumo:
The intensity and kinetics of the serum polymeric and monomeric immunoglobulin A1 (IgA1) and IgA2 antibody responses to Campylobacter jejuni were analyzed. A rapid and marked serum IgA antibody response involving both the monomeric and polymeric components of IgA was observed after C. jejuni infections. IgA antibodies reached a peak of activity in serum during week 2 after the first symptoms of enteritis, about 10 days before the peak of IgG activity. Polymeric IgA accounted for most of the anti-C. jejuni activity at the peak of the IgA response (median, 90%; range, 44 to 98%) but rapidly disappeared from serum over a few weeks. In contrast, the serum monomeric IgA antibody response was low and was maintained over a prolonged period of time. Anti-C. jejuni IgA detected in the serum of healthy blood donors was mainly monomeric (median, 83%; range, 17 to 94%). In both the patients and the positive controls, IgA1 was the predominant (greater than 85%) subclass involved, even when the IgA antibody response was mainly polymeric. Our results suggest that polymeric IgA antibody responses are linked to a strong or persisting antigenic stimulation or both. Polymeric IgA antibodies appear to be a potential marker of acute C. jejuni infections, and their determination could provide a useful tool for the serological diagnosis of recent C. jejuni infections.
Resumo:
To analyse the impact of lack of MHC class II expression on the composition of the peripheral T-cell compartment in man, the expression characteristics of several membrane antigens were examined on peripheral blood lymphocytes (PBL) and cultured T cells derived from an MHC-class-II-deficient patient. No MHC class II expression could be detected on either PBL or activated T cells. Moreover, the expression of MHC class I was reduced both on PBL and in vitro activated T cells compared to the healthy control. However, the reduced expression of CD26 observed on the PBL of the patient was restored after in vitro expansion. Despite the presumably class-II-deficient thymic environment, a distinct but reduced single CD4+ T-cell population was observed in the PBL of the patient. After in vitro expansion, the percentage of CD4+ cells dropped even further, most likely due to a proliferative disadvantage, compared to the single CD8+ T-cell population. However, proliferation analysis showed that T-cell activation via the TcR/CD3 pathway is not affected by the MHC class II deficiency.
Resumo:
Previously, we and others have shown that MHC class-II deficient humans have greatly reduced numbers of CD4+CD8- peripheral T cells. These type-III Bare Lymphocyte Syndrome patients lack MHC class-II and have an impaired MHC class-I antigen expression. In this study, we analyzed the impact of the MHC class-II deficient environment on the TCR V-gene segment usage in this reduced CD4+CD8- T-cell subset. For these studies, we employed TcR V-region-specific monoclonal antibodies (mAbs) and a semiquantitative PCR technique with V alpha and V beta amplimers, specific for each of the most known V alpha- and V beta-gene region families. The results of our studies demonstrate that some of the V alpha-gene segments are used less frequent in the CD4+CD8- T-cell subset of the patient, whereas the majority of the TCR V alpha- and V beta-gene segments investigated were used with similar frequencies in both subsets in the type-III Bare Lymphocyte Syndrome patient compared to healthy control family members. Interestingly, the frequency of TcR V alpha 12 transcripts was greatly diminished in the patient, both in the CD4+CD8- as well as in the CD4-CD8+ compartment, whereas this gene segment could easily be detected in the healthy family controls. On the basis of the results obtained in this study, it is concluded that within the reduced CD4+CD8- T-cell subset of this patient, most of the TCR V-gene segments tested for are employed. However, a skewing in the usage frequency of some of the V alpha-gene segments toward the CD4-CD8+ T-cell subset was noticeable in the MHC class-II deficient patient that differed from those observed in the healthy family controls.
Resumo:
Journal Article