3 resultados para frog density
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Optimising chemotherapy dose density and dose intensity are strategies aimed at improving outcomes in adjuvant therapy for patients with breast cancer. There are, in theory, at least five models allowing the delivery of a higher overall drug dose intensity. These are reviewed in this article and vary according to three main variables: the dose per course, the interval between doses and the total cumulative dose. Cyclophosphamide, anthracyclines and taxanes are among the most active agents for the treatment of breast cancer and, as such, they have been or are currently the focus of prospective, randomised clinical trials testing some of these dose-intensity models in the adjuvant setting. The results of recent trials suggest that anthracyclines, but not cyclophosphamide, are associated with better outcomes if used at higher doses per course and at higher cumulative doses. However, care has to be taken with premenopausal women where an increased dose of anthracycline per course but a reduced cumulative dose appears to produce a worse outcome. Moreover, decreasing the interval between doses, for anthracyclines and cyclophosphamide, does not seem to provide, so far, additional benefits for women with locally advanced breast cancer. This approach is not feasible with docetaxel, since an increase in dose density induces unwanted side-effects. These results represent our current state of knowledge, but clinical trials are being performed to evaluate further the effect of dose intensity, dose density and cumulative dose of key therapeutic agents on patient outcomes.
Resumo:
Clinical Trial
Resumo:
The vibrational properties of the 2-mercaptobenzimidazole (MBI) molecule in interaction with gold were examined by a combined approach of FTIR measurements and density functional theory (DFT). A complete assignment of the 42 normal modes of MBI has been performed on the basis of DFT calculations at the B3PW91 level in complement to the Raman and FTIR spectra. Calculations demonstrated that, on the deprotonated MBI molecule, the negative charge is localized on the sulfur atom, favoring the formation of a gold-sulfur bond upon reaction of MBI with gold. This was confirmed by the very good agreement between the calculated spectrum and the experimental spectra of different gold-MBI compounds, indicating that the vibrational properties of adsorbed MBI are chiefly determined by the coordination through the sulfur atom. © 2006 American Chemical Society.