2 resultados para female travel memoir

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown previously that female mice homozygous for an alpha-fetoprotein (AFP) null allele are sterile as a result of anovulation, probably due to a defect in the hypothalamic-pituitary axis. Here we show that these female mice exhibit specific anomalies in the expression of numerous genes in the pituitary, including genes involved in the gonadotropin-releasing hormone pathway, which are underexpressed. In the hypothalamus, the gonadotropin-releasing hormone gene, Gnrh1, was also found to be down-regulated. However, pituitary gene expression could be normalized and fertility could be rescued by blocking prenatal estrogen synthesis using an aromatase inhibitor. These results show that AFP protects the developing female brain from the adverse effects of prenatal estrogen exposure and clarify a long-running debate on the role of this fetal protein in brain sexual differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two clearly opposing views exist on the function of alpha-fetoprotein (AFP), a fetal plasma protein that binds estrogens with high affinity, in the sexual differentiation of the rodent brain. AFP has been proposed to either prevent the entry of estrogens or to actively transport estrogens into the developing female brain. The availability of Afp mutant mice (Afp-/-) now finally allows us to resolve this longstanding controversy concerning the role of AFP in brain sexual differentiation, and thus to determine whether prenatal estrogens contribute to the development of the female brain. Here we show that the brain and behavior of female Afp-/- mice were masculinized and defeminized. However, when estrogen production was blocked by embryonic treatment with the aromatase inhibitor 1,4,6-androstatriene-3,17- dione, the feminine phenotype of these mice was rescued. These results clearly demonstrate that prenatal estrogens masculinize and defeminize the brain and that AFP protects the female brain from these effects of estrogens. © 2006 Nature Publishing Group.