2 resultados para ethics in practice
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Whereas the resolving power of an ordinary optical microscope is determined by the classical Rayleigh distance, significant super-resolution, i.e. resolution improvement beyond that Rayleigh limit, has been achieved by confocal scanning light microscopy. Furthermore is has been shown that the resolution of a confocal scanning microscope can still be significantly enhanced by measuring, for each scanning position, the full diffraction image by means of an array of detectors and by inverting these data to recover the value of the object at the focus. We discuss the associated inverse problem and show how to generalize the data inversion procedure by allowing, for reconstructing the object at a given point, to make use also of the diffraction images recorded at other scanning positions. This leads us to a whole family of generalized inversion formulae, which contains as special cases some previously known formulae. We also show how these exact inversion formulae can be implemented in practice.
Resumo:
Inverse diffraction consists in determining the field distribution on a boundary surface from the knowledge of the distribution on a surface situated within the domain where the wave propagates. This problem is a good example for illustrating the use of least-squares methods (also called regularization methods) for solving linear ill-posed inverse problem. We focus on obtaining error bounds For regularized solutions and show that the stability of the restored field far from the boundary surface is quite satisfactory: the error is proportional to ∊(ðŗ‚ ≃ 1) ,ðŗœ being the error in the data (Hölder continuity). However, the error in the restored field on the boundary surface is only proportional to an inverse power of │In∊│ (logarithmic continuity). Such a poor continuity implies some limitations on the resolution which is achievable in practice. In this case, the resolution limit is seen to be about half of the wavelength. Copyright © 1981 by The Institute of Electrical and Electronics Engineers, Inc.