6 resultados para esrb mutant

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two clearly opposing views exist on the function of alpha-fetoprotein (AFP), a fetal plasma protein that binds estrogens with high affinity, in the sexual differentiation of the rodent brain. AFP has been proposed to either prevent the entry of estrogens or to actively transport estrogens into the developing female brain. The availability of Afp mutant mice (Afp-/-) now finally allows us to resolve this longstanding controversy concerning the role of AFP in brain sexual differentiation, and thus to determine whether prenatal estrogens contribute to the development of the female brain. Here we show that the brain and behavior of female Afp-/- mice were masculinized and defeminized. However, when estrogen production was blocked by embryonic treatment with the aromatase inhibitor 1,4,6-androstatriene-3,17- dione, the feminine phenotype of these mice was rescued. These results clearly demonstrate that prenatal estrogens masculinize and defeminize the brain and that AFP protects the female brain from these effects of estrogens. © 2006 Nature Publishing Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final step of the transduction pathway is the activation of gene transcription, which is driven by kinase cascades leading to changes in the activity of many transcription factors. Among these latter, PEA3/E1AF, ER81/ETV1, and ERM, members of the well conserved PEA3 group from the Ets family are involved in these processes. We show here that protein kinase A (PKA) increases the transcriptional activity of human ERM and human ETV1, through a Ser residue situated at the edge of the ETS DNA-binding domain. PKA phosphorylation does not directly affect the ERM transactivation domains but does affect DNA binding activity. Unphosphorylated wild-type ERM bound DNA avidly, whereas after PKA phosphorylation it did so very weakly. Interestingly, S367A mutation significantly reduced the ERM-mediated transcription in the presence of the kinase, and the DNA binding of this mutant, although similar to that of unphosphorylated wild-type protein, was insensitive to PKA treatment. Mutations, which may mimic a phosphorylated serine, converted ERM from an efficient DNA-binding protein to a poor DNA binding one, with inefficiency of PKA phosphorylation. The present data clearly demonstrate a close correlation between the capacity of PKA to increase the transactivation of ERM and the drastic down-regulation of the binding of the ETS domain to the targeted DNA. What we thus demonstrate here is a relatively rare transcription activation mechanism through a decrease in DNA binding, probably by the shift of a non-active form of an Ets protein to a PKA-phosphorylated active one, which should be in a conformation permitting a transactivation domain to be active.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E-cadherin is involved in the formation of cell-junctions and the maintenance of epithelial integrity. Direct evidence of E-cadherin mutations triggering tumorigenesis has come from the finding of inactivating germline mutations of the gene (CDH1) in hereditary diffuse gastric cancer (HDGC). We screened a series of 66 young gastric cancer probands for germline CDH1 mutations, and two novel missense alterations together with an intronic variant were identified. We then analysed the functional significance of the exonic missense variants found here as well as a third germline missense variant that we previously identified in a HGDC family. cDNAs encoding either the wild-type protein or mutant forms of E-cadherin were stably transfected into CHO (Chinese hamster ovary) E-cadherin-negative cells. Transfected cell-lines were characterized in terms of aggregation, motility and invasion. We show that a proportion of apparently sporadic early-onset diffuse gastric carcinomas are associated with germline alterations of the E-cadherin gene. We also demonstrate that a proportion of missense variants are associated with significant functional consequences, suggesting that our cell model can be used as an adjunct in deciding on the potential pathogenic role of identified E-cadherin germline alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactions of Mycobacterium tuberculosis with macrophages have long been recognized to be crucial to the pathogenesis of tuberculosis. The role of non-phagocytic cells is less well known. We have discovered a M. tuberculosis surface protein that interacts specifically with non-phagocytic cells, expresses hemagglutination activity and binds to sulfated glycoconjugates. It is therefore called heparin-binding hemagglutinin (HBHA). HBHA-deficient M. tuberculosis mutant strains are significantly impaired in their ability to disseminate from the lungs to other tissues, suggesting that the interaction with non-phagocytic cells, such as pulmonary epithelial cells, may play an important role in the extrapulmonary dissemination of the tubercle bacillus, one of the key steps that may lead to latency. Latently infected human individuals mount a strong T cell response to HBHA, whereas patients with active disease do not, suggesting that HBHA is a good marker for the immunodiagnosis of latent tuberculosis, and that HBHA-specific Th1 responses may contribute to protective immunity against active tuberculosis. Strong HBHA-mediated immuno-protection was shown in mouse challenge models. HBHA is a methylated protein and its antigenicity in latently infected subjects, as well as its protective immunogenicity strongly depends on the methylation pattern of HBHA. In both mice and man, the HBHA-specific IFN-gamma was produced by both the CD4(+) and the CD8(+) T cells. Furthermore, the HBHA-specific CD8(+) T cells expressed bactericidal and cytotoxic activities to mycobacteria-infected macrophages. This latter activity is most likely perforin mediated. Together, these observations strongly support the potential of methylated HBHA as an important component in future, acellular vaccines against tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Few data are available on the potential role of T lymphocytes in experimental acute pancreatitis. The aim of this study was to characterize their role in the inflammatory cascade of acute pancreatitis. METHODS: To type this issue, acute pancreatitis was induced by repeated injections of cerulein in nude mice and in vivo CD4(+) or CD8(+) T cell-depleted mice. The role of T lymphocyte-costimulatory pathways was evaluated using anti-CD40 ligand or anti-B7-1 and -B7-2 monoclonal blocking antibodies. The role of Fas-Fas ligand was explored using Fas ligand-targeted mutant (generalized lymphoproliferative disease) mice. Severity of acute pancreatitis was assessed by serum hydrolase levels and histology. Intrapancreatic interleukin 12, interferon gamma, Fas ligand, and CD40 ligand messenger RNA were detected by reverse-transcription polymerase chain reaction. Intrapancreatic T lymphocytes were identified by immunohistochemistry. RESULTS: In control mice, T cells, most of them CD4(+) T cells, are present in the pancreas and are recruited during acute pancreatitis. In nude mice, histological lesions and serum hydrolase levels are significantly decreased. T-lymphocyte transfer into nude mice partially restores the severity of acute pancreatitis and intrapancreatic interferon gamma, interleukin 12, and Fas ligand gene transcription. The severity of pancreatitis is also reduced by in vivo CD4(+) (but not CD8(+)) T-cell depletion and in Fas ligand-targeted mutant mice. Blocking CD40-CD40 ligand or B7-CD28 costimulatory pathways has no effect on the severity of pancreatitis. CONCLUSIONS: T lymphocytes, particularly CD4(+) T cells, play a pivotal role in the development of tissue injury during acute experimental pancreatitis in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand how a signaling molecule's activities are regulated, we need insight into the processes controlling the dynamic balance between its synthesis and degradation. For the Ins(1,3,4,5,6)P5 signal, this information is woefully inadequate. For example, the only known cytosolic enzyme with the capacity to degrade Ins(1,3,4,5,6)P5 is the tumour-suppressor PTEN [J.J. Caffrey, T. Darden, M.R. Wenk, S.B. Shears, FEBS Lett. 499 (2001) 6 ], but the biological relevance has been questioned by others [E.A. Orchiston, D. Bennett, N.R. Leslie, R.G. Clarke, L. Winward, C.P. Downes, S.T. Safrany, J. Biol. Chem. 279 (2004) 1116 ]. The current study emphasizes the role of physiological levels of PTEN in Ins(1,3,4,5,6)P5 homeostasis. We employed two cell models. First, we used a human U87MG glioblastoma PTEN-null cell line that hosts an ecdysone-inducible PTEN expression system. Second, the human H1299 bronchial cell line, in which PTEN is hypomorphic due to promoter methylation, has been stably transfected with physiologically relevant levels of PTEN. In both models, a novel consequence of PTEN expression was to increase Ins(1,3,4,5,6)P5 pool size by 30-40% (p<0.01); this response was wortmannin-insensitive and, therefore, independent of the PtdIns 3-kinase pathway. In U87MG cells, induction of the G129R catalytically inactive PTEN mutant did not affect Ins(1,3,4,5,6)P(5) levels. PTEN induction did not alter the expression of enzymes participating in Ins(1,3,4,5,6)P5 synthesis. Another effect of PTEN expression in U87MG cells was to decrease InsP6 levels by 13% (p<0.02). The InsP6-phosphatase, MIPP, may be responsible for the latter effect; we show that recombinant human MIPP dephosphorylates InsP6 to D/L-Ins(1,2,4,5,6)P5, levels of which increased 60% (p<0.05) following PTEN expression in U87MG cells. Overall, our data add higher inositol phosphates to the list of important cellular regulators [Y. Huang, R.P. Wernyj, D.D. Norton, P. Precht, M.C. Seminario, R.L. Wange, Oncogene, 24 (2005) 3819 ] the levels of which are modulated by expression of the highly pleiotropic PTEN protein.