37 resultados para dynamique moléculaire

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A slit nozzle supersonic expansion containing C2H2 (246 sccm) and N2O (355 sccm) seeded into Ar (1260 sccm) is investigated using CW cavity ring-down spectroscopy, in the 1.5 μm range. The C2H2-N2O van der Waals complex is observed around the 2CH acetylenic band. Despite strong perturbations, 117 b-type lines are assigned. Their combined fit with published microwave data leads to new upper state and improved lower state rotational constants. The Lorentzian width of the assigned line profiles sets the mean lifetime to 1.6 ns. The rotational temperature is estimated to be 15 K from the comparison between observed and simulated spectra. © 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supersonic expansion containing acetylene seeded into Ar and produced from a circular nozzle is investigated using CW/cavity ring down spectroscopy, in the 1.5 μm range. The results, also involving experiments with pure acetylene and acetylene-He expansions, as well as slit nozzles, demonstrate that the denser central section in the expansion is slightly heated by the formation of acetylene aggregates, resulting into a dip in the monomer absorption line profiles. Acetylene-Ar aggregates are also formed at the edge of the circular nozzle expansion cone. © 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spectra of jet-cooled C2H2 recorded with an FTIR spectrometer, the ν5, ν4 + ν5, ν3 and ν2 + ν4 + ν5 bands all exhibit an intensity distribution corresponding to ∼6 K for rotation, with no evidence of nuclear spin conversion. Spectra of C2H2 isolated in solid p-H2 show no evidence of rotation of C2H2. The strong interaction between ν3 and ν2 + ν4 + ν5 in the gas phase is diminished in solid p-H2. Lines associated with dimer, trimer and tetramer of C2H2 are identified. Spectral features characteristic of solid state acetylene are observed under jet-cooled conditions. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown previously that female mice homozygous for an alpha-fetoprotein (AFP) null allele are sterile as a result of anovulation, probably due to a defect in the hypothalamic-pituitary axis. Here we show that these female mice exhibit specific anomalies in the expression of numerous genes in the pituitary, including genes involved in the gonadotropin-releasing hormone pathway, which are underexpressed. In the hypothalamus, the gonadotropin-releasing hormone gene, Gnrh1, was also found to be down-regulated. However, pituitary gene expression could be normalized and fertility could be rescued by blocking prenatal estrogen synthesis using an aromatase inhibitor. These results show that AFP protects the developing female brain from the adverse effects of prenatal estrogen exposure and clarify a long-running debate on the role of this fetal protein in brain sexual differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two clearly opposing views exist on the function of alpha-fetoprotein (AFP), a fetal plasma protein that binds estrogens with high affinity, in the sexual differentiation of the rodent brain. AFP has been proposed to either prevent the entry of estrogens or to actively transport estrogens into the developing female brain. The availability of Afp mutant mice (Afp-/-) now finally allows us to resolve this longstanding controversy concerning the role of AFP in brain sexual differentiation, and thus to determine whether prenatal estrogens contribute to the development of the female brain. Here we show that the brain and behavior of female Afp-/- mice were masculinized and defeminized. However, when estrogen production was blocked by embryonic treatment with the aromatase inhibitor 1,4,6-androstatriene-3,17- dione, the feminine phenotype of these mice was rescued. These results clearly demonstrate that prenatal estrogens masculinize and defeminize the brain and that AFP protects the female brain from these effects of estrogens. © 2006 Nature Publishing Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ets transcription factors of the PEA3 group - E1AF/PEA3, ETV1/ER81 and ERM - are almost identical in the ETS DNA-binding and the transcriptional acidic domains. To accelerate our understanding of the molecular basis of putative diseases linked to ETV1 such as Ewing's sarcoma we characterized the human ETV1 and the mouse ER81 genes. We showed that these genes are both encoded by 13 exons in more than 90 kbp genomic DNA, and that the classical acceptor and donor splicing sites are present in each junction except for the 5' donor site of intron 9 where GT is replaced by TT. The genomic organization of the ETS and acidic domains in the human ETV1 and mouse ER81 (localized to chromosome 12) genes is similar to that observed in human ERM and human E1AF/PEA3 genes. Moreover, as in human ERM and human E1AF/PEA3 genes, a first untranslated exon is upstream from the first methionine, and the mouse ER81 gene transcription is regulated by a 1.8 kbp of genomic DNA upstream from this exon. In human, the alternative splicing of the ETV1 gene leads to the presence (ETV1α) or the absence (ETV1β) of exon 5 encoding the C-terminal part of the transcriptional acidic domain, but without affecting the alpha helix previously described as crucial for transactivation. We demonstrated here that the truncated isoform (human ETV1β) and the full-length isoform (human ETV1α) bind similarly specific DNA Ets binding sites. Moreover, they both activate transcription similarly through the PKA-transduction pathway, so suggesting that this alternative splicing is not crucial for the function of this protein as a transcription factor. The comparison of human ETV1α and human ETV1β expression in the same tissues, such as the adrenal gland or the bladder, showed no clear-cut differences. Altogether, these data open a new avenue of investigation leading to a better understanding of the functional role of this transcription factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E2F6 is widely expressed in human tissues and cell lines. Recent studies have demonstrated its involvement in developmental patterning and in the regulation of various genes implicated in chromatin remodelling. Despite a growing number of studies, nothing is really known concerning the E2F6 expression regulation. To understand how cells control E2F6 expression, we analysed the activity of the previously cloned promoter region of the human E2F6 gene. DNase I footprinting, gel electrophoretic-mobility shift, transient transfection and site-directed mutagenesis experiments allowed the identification of two functional NRF-1/α-PAL (nuclear respiratory factor-1/α-palindrome-binding protein)-binding sites within the human E2F6 core promoter region, which are conserved in the mouse and rat E2F6 promoter region. Moreover, ChIP (chromatin immunoprecipitation) analysis demonstrated that overexpressed NRF-1/α-PAL is associated in vivo with the E2F6 promoter. Furthermore, overexpression of full-length NRF-1/α-PAL enhanced E2F6 promoter activity, whereas expression of its dominant-negative form reduced the promoter activity. Our results indicate that NRF-1/α-PAL is implicated in the regulation of basal E2F6 gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final step of the transduction pathway is the activation of gene transcription, which is driven by kinase cascades leading to changes in the activity of many transcription factors. Among these latter, PEA3/E1AF, ER81/ETV1, and ERM, members of the well conserved PEA3 group from the Ets family are involved in these processes. We show here that protein kinase A (PKA) increases the transcriptional activity of human ERM and human ETV1, through a Ser residue situated at the edge of the ETS DNA-binding domain. PKA phosphorylation does not directly affect the ERM transactivation domains but does affect DNA binding activity. Unphosphorylated wild-type ERM bound DNA avidly, whereas after PKA phosphorylation it did so very weakly. Interestingly, S367A mutation significantly reduced the ERM-mediated transcription in the presence of the kinase, and the DNA binding of this mutant, although similar to that of unphosphorylated wild-type protein, was insensitive to PKA treatment. Mutations, which may mimic a phosphorylated serine, converted ERM from an efficient DNA-binding protein to a poor DNA binding one, with inefficiency of PKA phosphorylation. The present data clearly demonstrate a close correlation between the capacity of PKA to increase the transactivation of ERM and the drastic down-regulation of the binding of the ETS domain to the targeted DNA. What we thus demonstrate here is a relatively rare transcription activation mechanism through a decrease in DNA binding, probably by the shift of a non-active form of an Ets protein to a PKA-phosphorylated active one, which should be in a conformation permitting a transactivation domain to be active.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E-cadherin is involved in the formation of cell-junctions and the maintenance of epithelial integrity. Direct evidence of E-cadherin mutations triggering tumorigenesis has come from the finding of inactivating germline mutations of the gene (CDH1) in hereditary diffuse gastric cancer (HDGC). We screened a series of 66 young gastric cancer probands for germline CDH1 mutations, and two novel missense alterations together with an intronic variant were identified. We then analysed the functional significance of the exonic missense variants found here as well as a third germline missense variant that we previously identified in a HGDC family. cDNAs encoding either the wild-type protein or mutant forms of E-cadherin were stably transfected into CHO (Chinese hamster ovary) E-cadherin-negative cells. Transfected cell-lines were characterized in terms of aggregation, motility and invasion. We show that a proportion of apparently sporadic early-onset diffuse gastric carcinomas are associated with germline alterations of the E-cadherin gene. We also demonstrate that a proportion of missense variants are associated with significant functional consequences, suggesting that our cell model can be used as an adjunct in deciding on the potential pathogenic role of identified E-cadherin germline alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

E2F6 protein belongs to the family of the E2F transcription factors. Here, we showed that the human E2F6 gene contains nine exons distributed along 20.4kbp of genomic DNA on chromosome 2 leading to the transcription of six alternatively spliced E2F6 mRNAs that encode four different E2F6 proteins. Moreover, we identified an E2F6 pseudogene localized on chromosome 22 completely spliced and devoid of exons 2, 3, and 4, and part of exons 1 and 5. Definition of the transcriptional initiation site and sequence analysis show that the gene contains a TATA less, CAAT less, GC-rich promoter with multiple transcription start sites. Regulatory elements necessary for basal transcription reside within a 134bp fragment as determined by transient transfection experiments. © 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ERM is a member of the ETS transcription factor family. High levels of the corresponding mRNA are detected in a variety of human breast cancer cell lines, as well as in aggressive human breast tumors. As ERM protein is almost undetectable in these cells, high degradation of this transcription factor has been postulated. Here we have investigated whether ERM degradation might depend on the proteasome pathway. We show that endogenous and ectopically expressed ERM protein is short-lived protein and undergoes proteasome-dependent degradation. Deletion mutagenesis studies indicate that the 61 C-terminal amino acids of ERM are critical for its proteolysis and serve as a degradation signal. Although ERM conjugates with ubiquitin, this post-translational modification does not depend on the C-terminal domain. We have used an Ets-responsive ICAM-1 reporter plasmid to show that the ubiquitin-proteasome pathway can affect transcriptional function of ERM. Thus, ERM is subject to degradation via the 26S proteasome pathway, and this pathway probably plays an important role in regulating ERM transcriptional activity. © 2007 Nature Publishing Group. All rights reserved.