4 resultados para dynamic light scattering
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We consider the problem of inverting experimental data obtained in light scattering experiments described by linear theories. We discuss applications to particle sizing and we describe fast and easy-to-implement algorithms which permit the extraction, from noisy measurements, of reliable information about the particle size distribution. © 1987, SPIE.
Resumo:
Photon correlation spectroscopy (PCS) is a light-scattering technique for particle size diagnosis. It has been used mainly in the investigation of hydrosol particles since it is based on the measurement of the correlation function of the light scattered from the Brownian motion of suspended particles. Recently this technique also proved useful for studying soot particles in flames and similar aerosol systems. In the case of a polydispersed system the problem of recovering the particle size distribution can be reduced to the problem of inverting the Laplace transform. In this paper we review several methods introduced by the authors for the solution of this problem. We present some numerical results and we discuss the resolution limits characterizing the reconstruction of the size distributions. © 1989.
Resumo:
Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear indexguiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources. © 2002 Optical Society of America.
Resumo:
The generation of a spatially single-mode white-light supercontinuum has been observed in a photonic crystal fiber pumped with 60-ps pulses of subkilowatt peak power. The spectral broadening is identified as being due to the combined action of stimulated Raman scattering and parametric four-wave-mixing generation, with a negligible contribution from the self-phase modulation of the pump pulses. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers. © 2001 Optical Society of America.