10 resultados para diffraction optics
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We propose a new formulation of Miller's regularization theory, which is particularly suitable for object restoration problems. By means of simple geometrical arguments, we obtain upper and lower bounds for the errors on regularized solutions. This leads to distinguish between ' Holder continuity ' which is quite good for practical computations and ` logarithmic continuity ' which is very poor. However, in the latter case, one can reconstruct local weighted averages of the solution. This procedure allows for precise valuations of the resolution attainable in a given problem. Numerical computations, made for object restoration beyond the diffraction limit in Fourier optics, show that, when logarithmic continuity holds, the resolution is practically independent of the data noise level. © 1980 Taylor & Francis Group, LLC.
Resumo:
info:eu-repo/semantics/published
Resumo:
In this paper we consider the problems of object restoration and image extrapolation, according to the regularization theory of improperly posed problems. In order to take into account the stochastic nature of the noise and to introduce the main concepts of information theory, great attention is devoted to the probabilistic methods of regularization. The kind of the restored continuity is investigated in detail; in particular we prove that, while the image extrapolation presents a Hölder type stability, the object restoration has only a logarithmic continuity. © 1979 American Institute of Physics.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
The problem of inverse diffraction from plane to plane is considered in the case where a finite aperture exists in the boundary plane. Singular values and singular functions for the problem are introduced, and the number of degrees of freedom is defined in terms of the distribution of the singular values. Numerical computations are presented for the one-dimensional problem, and it is shown that the effect of evanescent waves disappears at a distance of approximately one wavelength from the boundary plane, even when the dimension of the slit is comparable with the wavelength of the diffracted field. © 1983 Taylor & Francis Group, LLC.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
Inverse diffraction consists in determining the field distribution on a boundary surface from the knowledge of the distribution on a surface situated within the domain where the wave propagates. This problem is a good example for illustrating the use of least-squares methods (also called regularization methods) for solving linear ill-posed inverse problem. We focus on obtaining error bounds For regularized solutions and show that the stability of the restored field far from the boundary surface is quite satisfactory: the error is proportional to ∊(ðŗ‚ ≃ 1) ,ðŗœ being the error in the data (Hölder continuity). However, the error in the restored field on the boundary surface is only proportional to an inverse power of │In∊│ (logarithmic continuity). Such a poor continuity implies some limitations on the resolution which is achievable in practice. In this case, the resolution limit is seen to be about half of the wavelength. Copyright © 1981 by The Institute of Electrical and Electronics Engineers, Inc.
Resumo:
Using the regularization theory for improperly posed problems, we discuss object restoration beyond the diffraction limit in the presence of noise. Only the case of one-dimensional coherent objects is considered. We focus attention n the estimation of the error on the restored objects, and we show that, in most realistic cases, it is at best proportional to an inverse power of