9 resultados para diffraction limit
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We propose a new formulation of Miller's regularization theory, which is particularly suitable for object restoration problems. By means of simple geometrical arguments, we obtain upper and lower bounds for the errors on regularized solutions. This leads to distinguish between ' Holder continuity ' which is quite good for practical computations and ` logarithmic continuity ' which is very poor. However, in the latter case, one can reconstruct local weighted averages of the solution. This procedure allows for precise valuations of the resolution attainable in a given problem. Numerical computations, made for object restoration beyond the diffraction limit in Fourier optics, show that, when logarithmic continuity holds, the resolution is practically independent of the data noise level. © 1980 Taylor & Francis Group, LLC.
Resumo:
Using the regularization theory for improperly posed problems, we discuss object restoration beyond the diffraction limit in the presence of noise. Only the case of one-dimensional coherent objects is considered. We focus attention n the estimation of the error on the restored objects, and we show that, in most realistic cases, it is at best proportional to an inverse power of
Resumo:
Inverse diffraction consists in determining the field distribution on a boundary surface from the knowledge of the distribution on a surface situated within the domain where the wave propagates. This problem is a good example for illustrating the use of least-squares methods (also called regularization methods) for solving linear ill-posed inverse problem. We focus on obtaining error bounds For regularized solutions and show that the stability of the restored field far from the boundary surface is quite satisfactory: the error is proportional to ∊(ðŗ‚ ≃ 1) ,ðŗœ being the error in the data (Hölder continuity). However, the error in the restored field on the boundary surface is only proportional to an inverse power of │In∊│ (logarithmic continuity). Such a poor continuity implies some limitations on the resolution which is achievable in practice. In this case, the resolution limit is seen to be about half of the wavelength. Copyright © 1981 by The Institute of Electrical and Electronics Engineers, Inc.
Resumo:
The problem of achieving super-resolution, i.e. resolution beyond the classical Rayleigh distance of half a wavelength, is a real challenge in several imaging problems. The development of computer-assisted instruments and the possibility of inverting the recorded data has clearly modified the traditional concept of resolving power of an instrument. We show that, in the framework of inverse problem theory, the achievable resolution limit arises no longer from a universal rule but instead from a practical limitation due to noise amplification in the data inversion process. We analyze under what circumstances super-resolution can be achieved and we show how to assess the actual resolution limits in a given experiment, as a function of the noise level and of the available a priori knowledge about the object function. We emphasize the importance of the a priori knowledge of its effective support and we show that significant super-resolution can be achieved for "subwavelength sources", i.e. objects which are smaller than the probing wavelength.
Resumo:
Whereas the resolving power of an ordinary optical microscope is determined by the classical Rayleigh distance, significant super-resolution, i.e. resolution improvement beyond that Rayleigh limit, has been achieved by confocal scanning light microscopy. Furthermore is has been shown that the resolution of a confocal scanning microscope can still be significantly enhanced by measuring, for each scanning position, the full diffraction image by means of an array of detectors and by inverting these data to recover the value of the object at the focus. We discuss the associated inverse problem and show how to generalize the data inversion procedure by allowing, for reconstructing the object at a given point, to make use also of the diffraction images recorded at other scanning positions. This leads us to a whole family of generalized inversion formulae, which contains as special cases some previously known formulae. We also show how these exact inversion formulae can be implemented in practice.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
The problem of inverse diffraction from plane to plane is considered in the case where a finite aperture exists in the boundary plane. Singular values and singular functions for the problem are introduced, and the number of degrees of freedom is defined in terms of the distribution of the singular values. Numerical computations are presented for the one-dimensional problem, and it is shown that the effect of evanescent waves disappears at a distance of approximately one wavelength from the boundary plane, even when the dimension of the slit is comparable with the wavelength of the diffracted field. © 1983 Taylor & Francis Group, LLC.
Resumo:
info:eu-repo/semantics/published