4 resultados para cross-phase modulation
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear indexguiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources. © 2002 Optical Society of America.
Resumo:
The generation of a spatially single-mode white-light supercontinuum has been observed in a photonic crystal fiber pumped with 60-ps pulses of subkilowatt peak power. The spectral broadening is identified as being due to the combined action of stimulated Raman scattering and parametric four-wave-mixing generation, with a negligible contribution from the self-phase modulation of the pump pulses. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers. © 2001 Optical Society of America.
Resumo:
We study the generation of supercontinua in air-silica microstructured fibers by both nanosecond and femtosecond pulse excitation. In the nanosecond experiments, a 300-nm broadband visible continuum was generated in a 1.8-m length of fiber pumped at 532 nm by 0.8-ns pulses from a frequency-doubled passively Q-switched Nd:YAG microchip laser. At this wavelength, the dominant mode excited under the conditions of continuum generation is the LP 11 mode, and, with nanosecond pumping, self-phase modulation is negligible and the continuum generation is dominated by the interplay of Raman and parametric effects. The spectral extent of the continuum is well explained by calculations of the parametric gain curves for four-wave mixing about the zero-dispersion wavelength of the LP11 mode. In the femtosecond experiments, an 800-nm broad-band visible and near-infrared continuum has been generated in a 1-m length of fiber pumped at 780 nm by 100-fs pulses from a Kerr-lens model-locked Ti:sapphire laser. At this wavelength, excitation and continuum generation occur in the LP01 mode, and the spectral width of the observed continuum is shown to be consistent with the phase-matching bandwidth for parametric processes calculated for this fiber mode. In addition, numerical simulations based on an extended nonlinear Schrödinger equation were used to model supercontinuum generation in the femtosecond regime, with the simulation results reproducing the major features of the experimentally observed spectrum. © 2002 Optical Society of America.
Resumo:
PURPOSE: To compare the efficacy of paclitaxel versus doxorubicin given as single agents in first-line therapy of advanced breast cancer (primary end point, progression-free survival ¿PFS) and to explore the degree of cross-resistance between the two agents. PATIENTS AND METHODS: Three hundred thirty-one patients were randomized to receive either paclitaxel 200 mg/m(2), 3-hour infusion every 3 weeks, or doxorubicin 75 mg/m(2), intravenous bolus every 3 weeks. Seven courses were planned unless progression or unacceptable toxicity occurred before the seven courses were finished. Patients who progressed within the seven courses underwent early cross-over to the alternative drug, while a delayed cross-over was optional for the remainder of patients at the time of disease progression. RESULTS: Objective response in first-line therapy was significantly better (P =.003) for doxorubicin (response rate ¿RR, 41%) than for paclitaxel (RR, 25%), with doxorubicin achieving a longer median PFS (7.5 months for doxorubicin v 3.9 months for paclitaxel, P <.001). In second-line therapy, cross-over to doxorubicin (91 patients) and to paclitaxel (77 patients) gave response rates of 30% and 16%, respectively. The median survival durations of 18.3 months for doxorubicin and 15.6 months for paclitaxel were not significantly different (P =.38). The doxorubicin arm had greater toxicity, but this was counterbalanced by better symptom control. CONCLUSION: At the dosages and schedules used in the present study, doxorubicin achieves better disease and symptom control than paclitaxel in first-line treatment. Doxorubicin and paclitaxel are not totally cross-resistant, which supports further investigation of these drugs in combination or in sequence, both in advanced disease and in the adjuvant setting.