5 resultados para cross sections
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The increasing need for cross sections far from the valley of stability, especially for applications such as nuclear astrophysics, poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by an effective nucleon-nucleon interaction. All these microscopic ingredients have been included in the latest version of the TALYS nuclear reaction code (http://www.talys.eu/).
Resumo:
A study of proton-proton collisions in which two b hadrons are produced in association with a Z boson is reported. The collisions were recorded at a centre-of-mass energy of 7TeV with the CMS detector at the LHC, for an integrated luminosity of 5:2 fb-1. The b hadrons are identified by means of displaced secondary vertices, without the use of reconstructed jets, permitting the study of b-hadron pair production at small angular separation. Differential cross sections are presented as a function of the angular separation of the b hadrons and the Z boson. In addition, inclusive measurements are presented. For both the inclusive and differential studies, different ranges of Z boson momentum are considered, and each measurement is compared to the predictions from different event generators at leading-order and next-to-leading-order accuracy. Copyright CERN.
Resumo:
The need for nuclear data far from the valley of stability, for applications such as nuclear as- trophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in funda- mental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the relevant quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological mod- els, renormalized on experimental data if needed, and therefore can replace the phenomenogical inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, e.g. within the shell model or ab initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally.
Resumo:
This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e. spectra in which the individual lines are not resolved; individual line parameters and absorption cross-sections for bands in the ultraviolet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 42 molecules including many of their isotopologues. © 2009 Elsevier Ltd.
Resumo:
This paper describes the status circa 2001, of the HITRAN compilation that comprises the public edition available through 2001. The HITRAN compilation consists of several components useful for radiative transfer calculation codes: high-resolution spectroscopic parameters of molecules in the gas phase, absorption cross-sections for molecules with very dense spectral features, aerosol refractive indices, ultraviolet line-by-line parameters and absorption cross-sections, and associated database management software. The line-by-line portion of the database contains spectroscopic parameters for 38 molecules and their isotopologues and isotopomers suitable for calculating atmospheric transmission and radiance properties. Many more molecular species are presented in the infrared cross-section data than in the previous edition, especially the chlorofluorocarbons and their replacement gases. There is now sufficient representation so that quasi-quantitative simulations can be obtained with the standard radiance codes. In addition to the description and justification of new or modified data that have been incorporated since the last edition of HITRAN (1996), future modifications are indicated for cases considered to have a significant impact on remote-sensing experiments. © 2003 Elsevier Ltd. All rights reserved.