18 resultados para combination chemotherapy
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Single agent chemotherapy of advanced lung cancer is still unsatisfactory. The most encouraging results have been obtained with high dose intermittent treatment with cyclophosphamide, methotrexate or adriamycin. Combination chemotherapy is probably more efficacious than single agent chemotherapy, especially in oat cell carcinoma. The best treatment schedules give a response rate of approximately 80%. The value of adjuvant chemotherapy is not yet established, but new controlled clinical trials are indicated considering the poor results achieved by surgery and radiotherapy.
Resumo:
PURPOSE: To compare the efficacy of paclitaxel versus doxorubicin given as single agents in first-line therapy of advanced breast cancer (primary end point, progression-free survival ¿PFS) and to explore the degree of cross-resistance between the two agents. PATIENTS AND METHODS: Three hundred thirty-one patients were randomized to receive either paclitaxel 200 mg/m(2), 3-hour infusion every 3 weeks, or doxorubicin 75 mg/m(2), intravenous bolus every 3 weeks. Seven courses were planned unless progression or unacceptable toxicity occurred before the seven courses were finished. Patients who progressed within the seven courses underwent early cross-over to the alternative drug, while a delayed cross-over was optional for the remainder of patients at the time of disease progression. RESULTS: Objective response in first-line therapy was significantly better (P =.003) for doxorubicin (response rate ¿RR, 41%) than for paclitaxel (RR, 25%), with doxorubicin achieving a longer median PFS (7.5 months for doxorubicin v 3.9 months for paclitaxel, P <.001). In second-line therapy, cross-over to doxorubicin (91 patients) and to paclitaxel (77 patients) gave response rates of 30% and 16%, respectively. The median survival durations of 18.3 months for doxorubicin and 15.6 months for paclitaxel were not significantly different (P =.38). The doxorubicin arm had greater toxicity, but this was counterbalanced by better symptom control. CONCLUSION: At the dosages and schedules used in the present study, doxorubicin achieves better disease and symptom control than paclitaxel in first-line treatment. Doxorubicin and paclitaxel are not totally cross-resistant, which supports further investigation of these drugs in combination or in sequence, both in advanced disease and in the adjuvant setting.
Resumo:
BACKGROUND: To collect oncologists' experience and opinion on adjuvant chemotherapy in elderly breast cancer patients. MATERIALS AND METHODS: A questionnaire was circulated among the members of the Breast International Group. RESULTS: A total of 277 oncologists from 28 countries participated in the survey. Seventy years is the age cut-off commonly used to define a patient as elderly. Biological age and the biological characteristics of the tumor are the most frequently used criteria to propose adjuvant chemotherapy to an elderly patient. Combination therapy with cyclophosphamide, methotrexate and fluorouracil on days 1 and 8 is the most frequently prescribed regimen. Great interest exists in oral chemotherapy. CONCLUSION: There is interest among those who responded to the survey to validate a comprehensive geriatric assessment for use as a predictive instrument of toxicity and/or activity of anticancer therapy and to evaluate the role of a treatment option that is potentially less toxic and possibly as effective as polychemotherapy.
Resumo:
PURPOSE: To compare health-related quality of life (HRQOL) in patients with metastatic breast cancer receiving the combination of doxorubicin and paclitaxel (AT) or doxorubicin and cyclophosphamide (AC) as first-line chemotherapy treatment. PATIENTS AND METHODS: Eligible patients (n = 275) with anthracycline-naive measurable metastatic breast cancer were randomly assigned to AT (doxorubicin 60 mg/m(2) as an intravenous bolus plus paclitaxel 175 mg/m(2) as a 3-hour infusion) or AC (doxorubicin 60 mg/m(2) plus cyclophosphamide 600 mg/m(2)) every 3 weeks for a maximum of six cycles. Dose escalation of paclitaxel (200 mg/m(2)) and cyclophosphamide (750 mg/m(2)) was planned at cycle 2 to reach equivalent myelosuppression in the two groups. HRQOL was assessed with the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire C30 and the EORTC Breast Module at baseline and the start of cycles 2, 4, and 6, and 3 months after the last cycle. RESULTS: Seventy-nine percent of the patients (n = 219) completed a baseline measure. However, there were no statistically significant differences in HRQOL between the two treatment groups. In both groups, selected aspects of HRQOL were impaired over time, with increased fatigue, although some clinically significant improvements in emotional functioning were seen, as well as a reduction in pain over time. Overall, global quality of life was maintained in both treatment groups. CONCLUSION: This information is important when advising women patients of the expected HRQOL consequences of treatment regimens and should help clinicians and their patients make informed treatment decisions.
Resumo:
In breast cancer, chemotherapy regimens that include infusional 5-fluorouracil (5-FU) lead to high response rates, but require central venous access and pumps. To avoid these inconveniences, we substituted infusional 5-FU with capecitabine. The main objective of this study was to determine the maximum tolerated dose (MTD) of capecitabine when given in combination with fixed doses of epirubicin and cyclophosphamide (100 and 600 mg/m(2) day 1 every (q) 3 weeks) as primary treatment for large operable or locally advanced/inflammatory breast cancer without distant metastasis. Capecitabine was escalated from 750 mg/m(2) twice a day (bid) to 1250 mg/m(2) bid from day 1 to day 14 in four dose levels. Dose escalation was permitted if 0/3 or 1/6 patients experienced dose-limiting toxicity (DLT). A total of 23 patients were included and 117 courses were administered. At dose level 4, 2 of 2 patients presented DLTs defining the MTD. A high rate of capecitabine treatment modification was required with capecitabine 1050 mg/m(2) bid (dose level 3). 19 patients achieved an objective response (83%). In conclusion, we believe that capecitabine 900 mg/m(2) bid (dose level 2) is the recommended dose in combination with epirubicin 100 mg/m(2) and cyclophosphamide 600 mg/m(2). The acceptable toxicity profile and encouraging activity of this regimen warrant further evaluation.
Resumo:
PURPOSE: To compare the efficacy and tolerability of the combination of doxorubicin and paclitaxel (AT) with a standard doxorubicin and cyclophosphamide (AC) regimen as first-line chemotherapy for metastatic breast cancer. PATIENTS AND METHODS: Eligible patients were anthracycline-naive and had bidimensionally measurable metastatic breast cancer. Two hundred seventy-five patients were randomly assigned to be treated with AT (doxorubicin 60 mg/m(2) as an intravenous bolus plus paclitaxel 175 mg/m(2) as a 3-hour infusion) or AC (doxorubicin 60 mg/m(2) plus cyclophosphamide 600 mg/m(2)) every 3 weeks for a maximum of six cycles. A paclitaxel (200 mg/m(2)) and cyclophosphamide (750 mg/m(2)) dose escalation was planned at cycle 2 if no grade >or= 3 neutropenia occurred in cycle 1. The primary efficacy end point was progression-free survival (PFS). Secondary end points were response rate (RR), safety, overall survival (OS), and quality of life. RESULTS: A median number of six cycles were delivered in the two treatment arms. The relative dose-intensity and delivered cumulative dose of doxorubicin were lower in the AT arm. Dose escalation was only possible in 17% and 20% of the AT and AC patients, respectively. Median PFS was 6 months in the two treatments arms. RR was 58% versus 54%, and median OS was 20.6 versus 20.5 months in the AT and AC arms, respectively. The AT regimen was characterized by a higher incidence of febrile neutropenia, 32% versus 9% in the AC arm. CONCLUSION: No differences in the efficacy study end points were observed between the two treatment arms. Treatment-related toxicity compromised doxorubicin-delivered dose-intensity in the paclitaxel-based regimen
Resumo:
PURPOSE: The association of continuous infusion 5-fluorouracil, epirubicin (50 mg/m2 q 3 weeks) and a platinum compound (cisplatin or carboplatin) was found to be very active in patients with either locally advanced/inflammatory (LA/I) [1, 2] or large operable (LO) breast cancer (BC) [3]. The same rate of activity in terms of response rate (RR) and response duration was observed in LA/I BC patients when cisplatin was replaced by cyclophosphamide [4]. The dose of epirubicin was either 50 mg/m2 [ 1, 2, 3] or 60 mg/m2/cycle [4]. The main objective of this study was to determine the maximum tolerated dose (MTD) of epirubicin when given in combination with fixed doses of cyclophosphamide and infusional 5-fluorouracil (CEF-infu) as neoadjuvant therapy in patients with LO or LA/I BC for a maximum of 6 cycles. PATIENTS AND METHODS: Eligible patients had LO or LA/I BC, a performance status 0-1, adequate organ function and were <65 years old. Cyclophosphamide was administered at the dose of 400 mg/m2 day 1 and 8, q 4 weeks and infusional 5-fluorouracil 200 mg/m2/day was given day 1-28, q 4 weeks. Epirubicin was escalated from 30 to 45 and to 60 mg/m2 day 1 and 8; dose escalation was permitted if 0/3 or 1/6 patients experienced dose limiting toxicity (DLT) during the first 2 cycles of therapy. DLT for epirubicin was defined as febrile neutropenia, grade 4 neutropenia lasting for >7 days, grade 4 thrombocytopenia, or any non-haematological toxicity of CTC grade > or =3, excluding alopecia and plantar-palmar erythrodysesthesia (this toxicity was attributable to infusional 5-fluorouracil and was not considered a DLT of epirubicin). RESULTS: A total of 21 patients, median age 44 years (range 29-63) have been treated. 107 courses have been delivered, with a median number of 5 cycles per patient (range 4-6). DLTs on cycles I and 2 on level 1, 2, 3: grade 3 (G3) mucositis occurred in 1/10 patients treated at the third dose level. An interim analysis showed that G3 PPE occurred in 5/16 pts treated with the 28-day infusional 5-FU schedule at the 3 dose levels. The protocol was subsequently amended to limit the duration of infusional 5-fluorouracil infusion from 4 to 3 weeks. No G3 PPE was detected in 5 patients treated with this new schedule. CONCLUSIONS: This study establishes that epirubicin 60mg/m2 day 1 and 8, cyclophosphamide 400mg/m2 day 1 and 8 and infusional 5-fluorouracil 200 mg/m2/day day 1-21. q 4 weeks is the recommended dose level. Given the encouraging activity of this regimen (15/21 clinical responses) we have replaced infusional 5-fluorouracil by oral capecitabine in a recently activated study.
Resumo:
BACKGROUND AND PURPOSE: Docetaxel is an active agent in the treatment of metastatic breast cancer. We evaluated the feasibility of docetaxel-based sequential and combination regimens as adjuvant therapies for patients with node-positive breast cancer. PATIENTS AND METHODS: Three consecutive groups of patients with node-positive breast cancer or locally-advanced disease, aged < or = 70 years, received one of the following regimens: a) sequential A-->T-->CMF: doxorubicin 75 mg/m2 q 3 weeks x 3, followed by docetaxel 100 mg/m2 q 3 weeks x 3, followed by i.v. CMF days 1 + 8 q 4 weeks x 3; b) sequential accelerated A-->T-->CMF: A and T were administered at the same doses q 2 weeks; c) combination therapy: doxorubicin 50 mg/m2 + docetaxel 75 mg/m2 q 3 weeks x 4, followed by CMF x 4. When indicated, radiotherapy was administered during or after CMF, and tamoxifen started after the end of CMF. RESULTS: Seventy-nine patients have been treated. Median age was 48 years. A 30% rate of early treatment discontinuation was observed in patients receiving the sequential accelerated therapy (23% during A-->T), due principally to severe skin toxicity. Median relative dose-intensity was 100% in the three treatment arms. The incidence of G3-G4 major toxicities by treated patients, was as follows: skin toxicity a: 5%; b: 27%; c: 0%; stomatitis a: 20%; b: 20%; c: 3%. The incidence of neutropenic fever was a: 30%; b: 13%; c: 48%. After a median follow-up of 18 months, no late toxicity has been reported. CONCLUSIONS: The accelerated sequential A-->T-->CMF treatment is not feasible due to an excess of skin toxicity. The sequential non accelerated and the combination regimens are feasible and under evaluation in a phase III trial of adjuvant therapy.
Resumo:
BACKGROUND: Docetaxel has proven efficacy in metastatic breast cancer. In this pilot study, we explored the efficacy/feasibility of docetaxel-based sequential and combination regimens as adjuvant therapy of node-positive breast cancer. PATIENTS AND METHODS: From March 1996 till March 1998, four consecutive groups of patients with stages II and III breast cancer, aged < or = 70 years, received one of the following regimens: a) sequential Doxorubicin (A) --> Docetaxel (T) --> CMF (Cyclophosphamide+Methotrexate+5-Fluorouracil): A 75 mg/m q 3 wks x 3, followed by T100 mg/m2 q 3 wks x 3, followed by i.v. CMF Days 1+8 q 4 wks x 3; b) sequential accelerated A --> T --> CMF: A and T administered at the same doses q 2 wks with Lenograstin support; c) combination therapy: A 50 mg/m2 + T 75 mg/m2 q 3 wks x 4, followed by CMF x 4; d) sequential T --> A --> CMF: T and A, administered as in group a), with the reverse sequence. When indicated, radiotherapy was administered during or after CMF, and Tamoxifen after CMF. RESULTS: Ninety-three patients were treated. The median age was 48 years (29-66) and the median number of positive axillary nodes was 6 (1-25). Tumors were operable in 94% and locally advanced in 6% of cases. Pathological tumor size was >2 cm in 72% of cases. There were 21 relapses, (18 systemic, 3 locoregional) and 11 patients (12%) have died from disease progression. At median follow-up of 39 months (6-57), overall survival (OS) was 87% (95% CI, 79-94%) and disease-free survival (DFS) was 76% (95% CI, 67%-85%). CONCLUSION: The efficacy of these docetaxel-based regimens, in terms of OS and DFS, appears to be at least as good as standard anthracycline-based adjuvant chemotherapy (CT), in similar high-risk patient populations.
Resumo:
PURPOSE: Taxanes (paclitaxel or docetaxel) have been sequenced or combined with anthracyclines (doxorubicin or epirubicin) for the first-line treatment of advanced breast cancer. This meta-analysis uses data from all relevant trials to detect any advantages of taxanes in terms of tumor response, progression-free survival (PFS), and survival. PATIENTS AND METHODS: Individual patient data were collected on eight randomized combination trials comparing anthracyclines + taxanes (+ cyclophosphamide in one trial) with anthracyclines + cyclophosphamide (+ fluorouracil in four trials), and on three single-agent trials comparing taxanes with anthracyclines. Combination trials included 3,034 patients; single-agent trials included 919 patients. RESULTS: Median follow-up of living patients was 43 months, median survival was 19.3 months, and median PFS was 7.1 months. In single-agent trials, response rates were similar in the taxanes (38%) and in the anthracyclines (33%) arms (P = .08). The hazard ratios for taxanes compared with anthracyclines were 1.19 (95% CI, 1.04 to 1.36; P = .011) for PFS and 1.01 (95% CI, 0.88 to 1.16; P = .90) for survival. In combination trials, response rates were 57% (10% complete) in taxane-based combinations and 46% (6% complete) in control arms (P < .001). The hazard ratios for taxane-based combinations compared with control arms were 0.92 (95% CI, 0.85 to 0.99; P = .031) for PFS and 0.95 (95% CI, 0.88 to 1.03; P = .24) for survival. CONCLUSION: Taxanes were significantly worse than single-agent anthracyclines in terms of PFS, but not in terms of response rates or survival. Taxane-based combinations were significantly better than anthracycline-based combinations in terms of response rates and PFS, but not in terms of survival.
Resumo:
Purpose: This study was designed to test the activity and feasibility of an all-oral regimen of levo-leucovorin and doxifluridine (dFUR) in the treatment of advanced colorectal cancer and to establish whether the pharmacokinetics of dFUR and fluorouracil (FU) are affected by demographic and/or biologic parameters. Materials and Methods: One hundred eight patients with histologically proven colorectal cancer received orally administered levo-leucovorin 25 mg followed 2 hours later by dFUR 1,200 mg/m2 on days 1 to 5, with the cycle being repeated every 10 days. Results: Among 62 previously untreated patients, two complete responses (CRs) and 18 partial responses (PRs) were observed (overall response rate, 32%; 95% confidence interval, 21% to 45%). The median response duration was 4 months (range, 2 to 13) and the median survival time, 14 months. Among 46 pretreated patients, there were three CRs and three PRs (response rate, 13%; 95% confidence interval, 5% to 26%). In this group of patients, the median response duration was 4 months (range, 1 to 12) and the median survival time, 12 months. No toxic deaths were observed. The only World Health Organization (WHO) grade 3 to 4 side effect was diarrhea (32 patients). Conclusion: This regimen is active in previously untreated colorectal cancer patients and combines good compliance with safety. Limited but definite efficacy was also detected in the patients previously treated with FU, which suggests incomplete cross- resistance between the two drugs. The pharmacokinetic results suggest that the conversion rate of dFUR to FU increases between days 1 and 5, but that FU levels remain low in comparison to those measured after classical FU therapy. Under the experimental conditions used in this study, the interpatient variability of pharmacokinetic parameters remains largely unexplained by the tested variables.
Resumo:
Purpose: Some phase II studies have suggested that the combination of interferons (IFNs) with dacarbazine (DTIC) in the treatment of malignant melanoma (MM) increases the antitumor activity of DTIC alone. In an attempt to confirm this hypothesis, a randomized study was performed with the further intent of observing whether low doses of recombinant interferon alfa-2a (rIFNα2a) could be as effective as intermediate doses. Patients and Methods: Two hundred sixty-six patients were randomized onto three different treatment arms: DTIC 800 mg/m 2 intravenously (IV) days 1 and 21; DTIC plus rIFNα2a 9 mIU intramuscularly (IM) daily; and DTIC plus rIFNα2a 3 mIU IM three times per week. Major prognostic factors were well balanced among the three arms. Chemotherapy was administered for a maximum of eight cycles. After 6 months of therapy, rIFNα2a was continued until disease progression at 3 mIU three times per week in responding patients who had received the combined treatment. Results: The percentage of objective responses did not differ among the three groups (20%, 28%, and 23%, respectively), although a significant prolongation of response duration was observed when rIFNα2a was added to DTIC (2.6 v 8.4 v 5.5 months, respectively). However, this improvement in response duration did not translate into an amelioration of overall survival. The addition of rIFNα2a led to the onset of flu-like syndrome, but in no case was it necessary to withdraw the treatment program and no toxic deaths or life-threatening toxicities were reported. Conclusion: In this study, rIFNα2a significantly prolonged response duration, whereas no effects on response rate and survival were observed; rIFNα2a 3 mIU appeared to be equally effective and better tolerated than 9 mIU.
Resumo:
The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and potential activity of combined gemcitabine and continuous infusion 5-fluorouracil (5-FU) in metastatic breast cancer (MBC) patients that are resistant to anthracyclines or have been pretreated with both anthracyclines and taxanes. 15 patients with MBC were studied at three European Organization for Research and Treatment of Cancer centres. 13 patients had received both anthracylines and taxanes. Gemcitabine was given intravenously (i.v.) on days 1 and 8, and 5-FU as a continuous i.v. infusion on days 1 through to 14, both drugs given in a 21-day schedule at four different dose levels. Both were given at doses commonly used for the single agents for the last dose level (dose level 4). One of 6 patients at level 4 (gemcitabine 1200 mg/m2 and 5-FU 250 mg/m2/day) had a DLT, a grade 3 stomatitis and skin toxicity. One DLT, a grade 3 transaminase rise and thrombosis, occurred in a patient at level 2 (gemcitabine 1000 mg/m2 and 5-FU 200 mg/m2/day). Thus, the MTD was not reached. One partial response and four disease stabilisations were observed. Only 1 patient withdrew from the treatment due to toxicity. The MTD was not reached in the phase I study. The combination of gemcitabine and 5-FU is well tolerated at doses up to 1200 mg/m2 given on days 1 and 8 and 250 mg/m2/day given on days 1 through to 14, respectively, every 21 days. The clinical benefit rate (responses plus no change of at least 6 months) was 33% with one partial response, suggesting that MBC patients with prior anthracycline and taxane therapy may derive significant benefit from this combination with minimal toxicity.
Resumo:
PURPOSE: Overall survival (OS) can be observed only after prolonged follow-up, and any potential effect of first-line therapies on OS may be confounded by the effects of subsequent therapy. We investigated whether tumor response, disease control, progression-free survival (PFS), or time to progression (TTP) could be considered a valid surrogate for OS to assess the benefits of first-line therapies for patients with metastatic breast cancer. PATIENTS AND METHODS: Individual patient data were collected on 3,953 patients in 11 randomized trials that compared an anthracycline (alone or in combination) with a taxane (alone or in combination with an anthracycline). Surrogacy was assessed through the correlation between the end points as well as through the correlation between the treatment effects on the end points. RESULTS: Tumor response (survival odds ratio [OR], 6.2; 95% CI, 5.3 to 7.0) and disease control (survival OR, 5.5; 95% CI, 4.8 to 6.3) were strongly associated with OS. PFS (rank correlation coefficient, 0.688; 95% CI, 0.686 to 0.690) and TTP (rank correlation coefficient, 0.682; 95% CI, 0.680 to 0.684) were moderately associated with OS. Response log ORs were strongly correlated with PFS log hazard ratios (linear coefficient [rho], 0.96; 95% CI, 0.73 to 1.19). Response and disease control log ORs and PFS and TTP log hazard ratios were poorly correlated with log hazard ratios for OS, but the confidence limits of rho were too wide to be informative. CONCLUSION: No end point could be demonstrated as a good surrogate for OS in these trials. Tumor response may be an acceptable surrogate for PFS.
Resumo:
Optimising chemotherapy dose density and dose intensity are strategies aimed at improving outcomes in adjuvant therapy for patients with breast cancer. There are, in theory, at least five models allowing the delivery of a higher overall drug dose intensity. These are reviewed in this article and vary according to three main variables: the dose per course, the interval between doses and the total cumulative dose. Cyclophosphamide, anthracyclines and taxanes are among the most active agents for the treatment of breast cancer and, as such, they have been or are currently the focus of prospective, randomised clinical trials testing some of these dose-intensity models in the adjuvant setting. The results of recent trials suggest that anthracyclines, but not cyclophosphamide, are associated with better outcomes if used at higher doses per course and at higher cumulative doses. However, care has to be taken with premenopausal women where an increased dose of anthracycline per course but a reduced cumulative dose appears to produce a worse outcome. Moreover, decreasing the interval between doses, for anthracyclines and cyclophosphamide, does not seem to provide, so far, additional benefits for women with locally advanced breast cancer. This approach is not feasible with docetaxel, since an increase in dose density induces unwanted side-effects. These results represent our current state of knowledge, but clinical trials are being performed to evaluate further the effect of dose intensity, dose density and cumulative dose of key therapeutic agents on patient outcomes.