5 resultados para classical conditioning, mere exposure effect, classical conditioning of preferences.
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Droplet size distribution of biodiesel oil with various compositions was investigated in this work. The droplets generated by a two-fluid atomizer were measured by a commercial PDA. It was found that viscosity of the fuel has a strong effect on the drop size distribution. Additionally, effect of air injection pressures applied to atomize the spray was taken into account. Shear force induced by flow field exerts an effect on distribution of biodiesel droplets in atomized spray.
Resumo:
The classical picture of the hydrophobic stabilization of proteins invokes a resemblance between the protein interior and nonpolar solvents, but the extent to which this is the case has often been questioned. The protein interior is believed to be at least as tightly packed as organic crystals, and was shown to have very low compressibility. There is also evidence that these properties are not uniform throughout the protein, and conflicting views exist on the nature of sidechain packing and on its influence on the properties of the protein.
Resumo:
Although steroid hormones are known to play a predominant role in the regulation of cell growth in hormone-sensitive cancers, their mechanisms of action, especially their interaction with growth factors and/or growth inhibitors, is poorly understood. We have recently observed that the effects of androgens and estrogens on the expression of the major protein found in human breast gross cystic disease fluid, protein-24, are opposite to their respective action on cell proliferation in human breast cancer cell lines. Somewhat surprisingly, the recent elucidation of the amino acid sequence of this progesterone binding protein reveals that this tumor marker is apolipoprotein D (apo D), a member of a superfamily of lipophilic ligand carrier proteins. The present study was designed to determine whether apo D is secreted by human prostate cancer cells and could thus be a new marker of steroid action in these cancer cells, and whether the sex steroid-induced stimulation of apo D secretion coincides with inhibition of cell proliferation. We took advantage of the biphasic pattern of the effect of steroids on the proliferation of the human prostate cancer LNCaP cell line, which offers the opportunity to discriminate between positive and negative steroid receptor-regulated cell growth processes. A 10-day exposure to low concentrations of dihydrotestosterone and testosterone caused a potent stimulation of LNCaP cell proliferation, whereas incubation with higher concentrations of these androgens led to a progressive decrease in cell proliferation towards basal levels. The biphasic action of androgens was also observed on apo D secretion, the effects on apo D secretion being inversely related to their action on LNCaP cell proliferation. Similar opposite biphasic effects were also observed with 9 other steroids, thus indicating that the stimulation of secretion of this new biochemical marker coincides with inhibition of cell proliferation in LNCaP human prostatic cancer cells.
Resumo:
We have recently characterized two types of rat 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) isoenzymes expressed in adrenals and gonads. In addition, we have cloned a third type of cDNA encoding a predicted type III 3β-HSD protein specifically expressed in the male rat liver which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells of the cDNAs reveals that the type III 3β-HSD protein does not display oxidative activity for the classical substrates of 3β-HSD, in contrast to the type I 3β-HSD isoenzyme. However, in the presence of NADH, type III isoenzyme, in common with the type I isoform, converts 5α-androstane-3,17-dione (A-dione) and 5α-dihydrotestosterone (DHT) to the corresponding 3β-hydroxysteroids. In fact, the type I and the type III isoenzymes have the same affinity for DHT with K(m) values of 5.05 and 6.16 μM, respectively. When NADPH is used as cofactor, the affinity for DHT of the type III isoform becomes higher than that of the type I isoform with K(m) values of 0.12 and 1.18 μM, respectively. The type III isoform is thus a 3-ketoreductase using NADPH as preferred cofactor which is responsible for the conversion of 3-keto-saturated steroids such as DHT and A-dione into less active steroids.
Resumo:
Transient expression in nonsteroidogenic mammalian cells of the rat wild type I and type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β- HSD) cDNAs shows that the encoded proteins, in addition to being able to catalyze the oxidation and isomerization of Δ5-3β-hydroxysteroid precursors into the corresponding Δ4-3-ketosteroids, interconvert 5α- dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol (3β-diol). When homogenate from cells transfected with a plasmid vector containing type I 3β-HSD is incubated in the presence of DHT using NAD+ as cofactor, a somewhat unexpected metabolite is formed, namely 5α-androstanedione (A- dione), thus indicating an intrinsic androgenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity of this 3β-HSD isoform. Although the relative Vmax of 17β-HSD activity is 14.9-fold lower than that of 3β-HSD activity, the Km value for the 17β-HSD activity of type I 3β-HSD is 7.97 μM, a value which is in the same range as the conversion of DHT into 3β- diol which shows a Km value of 4.02 μM. Interestingly, this 17β-HSD activity is highly predominant in unbroken cells in culture, thus supporting the physiological relevance of this 'secondary' activity. Such 17β-HSD activity is inhibited by the classical substrates of 3β-HSD, namely pregnenolone (PREG), dehydroepiandrosterone (DHEA), Δ5-androstene-3β,17β- diol (Δ5-diol), 5α-androstane-3β,17β-diol (3β-diol) and DHT, with IC50 values of 2.7, 1.0, 3.2, 6.2, and 6.3 μM, respectively. Although dual enzymatic activities have been previously reported for purified preparations of other steroidogenic enzymes, the present data demonstrate the multifunctional enzymatic activities associated with a recombinant oxidoreductase enzyme. In addition to its well known 3β-HSD activity, this enzyme possesses the ability to catalyze DHT into A-dione thus potentially controlling the level of the active androgen DHT in classical steroidogenic as well as peripheral intracrine tissues.