3 resultados para autosomal recessive
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Friedreich ataxia (FRDA) is the most common form of autosomal-recessive ataxia. Common nonmotor features include cardiomyopathy and diabetes mellitus. At present, no effective treatments are available to prevent disease progression. Age of onset varies from infancy to adulthood. In the majority of patients, FRDA is caused by intronic GAA expansions in FXN, which encodes a highly-conserved small mitochondrial matrix protein, frataxin. A mouse model of FRDA has been difficult to generate because complete loss of frataxin causes early embryonic lethality. Although there are some controversies about the function of frataxin, recent biochemical and structural studies have confirmed that it is a component of the multiprotein complex that assembles iron-sulfur clusters in the mitochondrial matrix. The main consequences of frataxin deficiency are energy deficit, altered iron metabolism, and oxidative damage.
Resumo:
Friedreich's ataxia (FRDA) is the most common autosomal recessive hereditary ataxia in Caucasians. Neurological symptoms dominate the clinical picture. The underlying neuropathology affects the dorsal root ganglia, the spinal cord, and the deep cerebellar nuclei. In addition, most cases present a hypertrophic cardiomyopathy that may cause premature death. Other problems include a high risk of diabetes, skeletal abnormalities such as kyphoscoliosis, and pes cavus. Most patients carry a homozygous expansion of GAA trinucleotide repeat within the first intron of the FXN gene, leading to repressed transcription through epigenetic mechanisms. The encoded protein, frataxin, is localized in mitochondria and participates in the biogenesis of iron-sulfur clusters. Frataxin deficiency leads to mitochondrial dysfunction, altered iron metabolism, and oxidative damage. Thanks to progress in understanding pathogenesis and to the development of animal and cellular models, therapies targeted to correct frataxin deficiency or its downstream consequences are being developed and tested in clinical trials.
Resumo:
Friedreich ataxia (FRDA) is an autosomal recessive disease characterized by progressive neurological and cardiac abnormalities. It has a prevalence of around 2×105 in whites, accounting for more than one-third of the cases of recessively inherited ataxia in this ethnic group. FRDA may not exist in nonwhite populations.The first symptoms usually appear in childhood, but age of onset may vary from infancy to adulthood. Atrophy of sensory and cerebellar pathways causes ataxia, dysarthria, fixation instability, deep sensory loss, and loss of tendon reflexes. Corticospinal degeneration leads to muscular weakness and extensor plantar responses. A hypertrophic cardiomyopathy may contribute to disability and cause premature death. Other common problems include kyphoscoliosis, pes cavus, and, in 10% of patients, diabetes mellitus.The FRDA gene (FXN) encodes a small mitochondrial protein, frataxin, which is produced in insufficient amounts in the disease, as a consequence of the epigenetic silencing of the gene triggered by a GAA triplet repeat expansion in the first intron of the gene. Frataxin deficiency results in impaired iron-sulfur cluster biogenesis in mitochondria, in turn leading to widespread dysfunction of iron-sulfur center containing enzymes (in particular respiratory complexes I, II and III, and aconitase), impaired iron metabolism, oxidative stress, and mitochondrial dysfunction. Therapy aims to restore frataxin levels or to correct the consequences of its deficiency.