12 resultados para adrenal gland
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
The Ets transcription factors of the PEA3 group - E1AF/PEA3, ETV1/ER81 and ERM - are almost identical in the ETS DNA-binding and the transcriptional acidic domains. To accelerate our understanding of the molecular basis of putative diseases linked to ETV1 such as Ewing's sarcoma we characterized the human ETV1 and the mouse ER81 genes. We showed that these genes are both encoded by 13 exons in more than 90 kbp genomic DNA, and that the classical acceptor and donor splicing sites are present in each junction except for the 5' donor site of intron 9 where GT is replaced by TT. The genomic organization of the ETS and acidic domains in the human ETV1 and mouse ER81 (localized to chromosome 12) genes is similar to that observed in human ERM and human E1AF/PEA3 genes. Moreover, as in human ERM and human E1AF/PEA3 genes, a first untranslated exon is upstream from the first methionine, and the mouse ER81 gene transcription is regulated by a 1.8 kbp of genomic DNA upstream from this exon. In human, the alternative splicing of the ETV1 gene leads to the presence (ETV1α) or the absence (ETV1β) of exon 5 encoding the C-terminal part of the transcriptional acidic domain, but without affecting the alpha helix previously described as crucial for transactivation. We demonstrated here that the truncated isoform (human ETV1β) and the full-length isoform (human ETV1α) bind similarly specific DNA Ets binding sites. Moreover, they both activate transcription similarly through the PKA-transduction pathway, so suggesting that this alternative splicing is not crucial for the function of this protein as a transcription factor. The comparison of human ETV1α and human ETV1β expression in the same tissues, such as the adrenal gland or the bladder, showed no clear-cut differences. Altogether, these data open a new avenue of investigation leading to a better understanding of the functional role of this transcription factor.
Resumo:
The PEA3 group members PEA3, ER81 and ERM, which are highly conserved transcription factors from the Ets family, are over-expressed in metastatic mammary tumors. In the current study, we present the characterization of a transgenic mouse strain which over-expresses ER81 in the mammary gland via the long terminal repeat of the mouse mammary tumor virus (LTR-MMTV). Although six genotypically positive transgenic lines were identified, only one expressed the ectopic transcript with an exclusive expression in the lactating and late-pregnancy (18th day) mammary glands. No mammary tumor or mammary deregulation appeared after 2 years of ectopic ER81 expression following lactation. We then sought to identify ER81 target genes, and the urokinase plasminogen activator (uPA) and the stromelysin-1, two enzymes involved in extracellular matrix degradation, were found to be transcriptionally upregulated in lactating mammary glands over-expressing ER81. Since these enzymes are involved in metastasis, this murine model could be further used to enhance mammary cancer metastatic process by crossing these animals with mice carrying non-metastatic mammary tumors. We thus created a transgenic mouse model permitting the over-expression of a functionally active Ets transcription factor in the mammary gland without perturbing its development.
Resumo:
SCOPUS: ar.j
Resumo:
We report the case of a 49-year old woman with an idiopathic pulmonary fibrosis (IPF) initially diagnosed as a systemic lupus erythematosus. The IPF is an uncommon clinical entity with an estimated prevalence from 3 to 6 cases per 100,000 in the general population of the United States. This disease is characterised by an insidious onset, a pejorative course and poor survival prognosis (median survival: 2.8 years). The diagnosis is often difficult and depends on the exclusion of other diseases associated with interstitial lung injury. It is generally established only after collegial coordination between the clinician, the radiologist and the pathologist. New consensuses are now published to establish a clear and explicit classification of the IPF. Moreover, because of the poor results obtained with conventional immunosuppressive drugs, new treatments are proposed.
Resumo:
The present study aimed to investigate the effects of cytochalasin B (20 μM) on the uptake of 3-O-[(14)C]-methyl-D-glucose or D-[U-(14)C]glucose (8.3 mM each) by BRIN-BD11 cells. Taking into account the distribution space of tritiated water ((3)HOH), which was unexpectedly increased shortly after exposure of the cells to cytochalasin B and then progressively returned to its control values, and that of L-[1-(14)C]glucose, used as an extracellular marker, it was demonstrated that cytochalasin B caused a modest, but significant inhibition of the uptake of D-glucose and its non-metabolized analog by the BRIN-BD11 cells. These findings resemble those observed in acinar or ductal cells of the rat submaxillary gland and displayed a relative magnitude comparable to that found for the inhibition of D-glucose metabolism by cytochalasin B in purified pancreatic islet B cells. These findings reinforce the view that the primary site of action of cytochalasin B is located at the level of the plasma membrane.
Resumo:
Duchenne muscular dystrophy is caused by dystrophin deficiency and muscle deterioration and preferentially affects boys. Antisense-oligonucleotide-induced exon skipping allows synthesis of partially functional dystrophin. We investigated the efficacy and safety of drisapersen, a 2'-O-methyl-phosphorothioate antisense oligonucleotide, given for 48 weeks.
Resumo:
Fifty-one in vivo characterized autonomous single adenomas have been studied for functional parameters in vitro, for gene and protein expression and for pathology, and have been systematically compared to the corresponding extratumoral quiescent tissue. The adenomas were characterized by a high level of iodide trapping that corresponds to a high level of Na+ /iodide symporter gene expression, a high thyroperoxidase mRNA and protein content, and a low H2O2 generation. This explains the iodide metabolism characteristics demonstrated before, ie, the main cause of the "hot" character of the adenomas is their increased iodide transport. The adenomas spontaneously secreted higher amounts of thyroid hormone than the quiescent tissue and in agreement with previous in vivo data, this secretion could be further enhanced by thyrotropin (TSH). Inositol uptake was also increased but there was no spontaneous increase of the generation of inositol phosphates and this metabolism could be further activated by TSH. These positive responses to TSH are in agreement with the properties of TSH-stimulated thyroid cells in vitro and in vivo. They are compatible with the characteristics of mutated TSH receptors whose constitutive activation accounts for the majority of autonomous thyroid adenomas in Europe. The number of cycling cells, as evaluated by MIB-1 immunolabeling was low but increased in comparison with the corresponding quiescent tissue or normal tissue. The cycling cells are observed mainly at the periphery; there was very little apoptosis. Both findings account for the slow growth of these established adenomas. On the other hand, by thyroperoxidase immunohistochemistry, the whole lesion appeared hyperfunctional, which demonstrates a dissociation of mitogenic and functional stimulations. Thyroglobulin, TSH receptor, and E-cadherin mRNA accumulations were not modified in a consistent way, which confirms the near-constitutive expression of the corresponding genes in normal differentiated tissue. On the contrary, early immediate genes expressions (c-myc, NGF1B, egr 1, genes of the fos and jun families) were decreased. This may be explained by the proliferative heterogeneity of the lesion and the previously described short, biphasic expression of these genes when induced by mitogenic agents. All the characteristics of the autonomous adenomas can therefore be explained by the effect of the known activating mutations of genes coding for proteins of the TSH cyclic adenosine monophosphate (cAMP) cascade, all cells being functionally activated while only those at the periphery multiply. The reason of this heterogeneity is unknown.
Resumo:
Induction of cell proliferation by mitogen or growth factor stimulation leads to the specific induction or repression of a large number of genes. To identify genes differentially regulated by the cAMP-dependent transduction pathway, which is poorly characterized so far, we used the cDNA expression array technology. Hybridizations of Atlas human cDNA expression arrays with (32)P-labeled cDNA probes derived from control or thyrotropin (TSH)-stimulated dog thyrocytes in primary culture generated expression profiles of hundreds of genes simultaneously. Among the genes that displayed modified expression, we selected the transcription factor ID3, whose expression was increased by a cAMP-dependent stimulus. ID3 overexpression after TSH stimulation was first verified by Northern blotting analysis, and its mRNA regulation was then investigated in response to a variety of agents acting on thyrocyte proliferation and/or differentiation. We show that: (1) ID3 mRNA induction was stronger after stimulation of the cAMP cascade, but was not restricted to this signaling pathway, as phorbol myristate ester (TPA) and insulin also stimulated mRNA accumulation; (2) in contrast, powerful mitogens for thyroid cells, epidermal growth factor and hepatocyte growth factor, did not significantly modify ID3 mRNA levels; (3) ID3 protein levels closely parallelled mRNA levels, as revealed by immunofluorescence experiments showing a nuclear signal regulated by TSH; (4) in papillary thyroid carcinomas, ID3 mRNA was downregulated. Our results suggest that ID3 expression might be more related to the differentiating process induced by TSH than to the proliferative action of this hormone.
Resumo:
In dog thyroid cells, insulin or IGF-1 induces cell growth and is required for the mitogenic action of TSH through cyclic AMP, of EGF, and of phorbol esters. HGF per se stimulates cell proliferation and is thus the only full mitogenic agent. TSH and cAMP enhance, whereas EGF phorbol esters and HGF repress differentiation expression. In this study, we have investigated for each factor and regulatory cascade of the intermediate step of immediate early gene induction, that is, c-myc, c-jun, jun D, jun B, c-fos, fos B, fra-1, fra-2, and egr1; fra-1 and fra-2 expressions were very low. TSH or forskolin increased the levels of c-myc, jun B, jun D, c-fos, and fos B while decreasing those of c-jun and egr1. Phorbol myristate ester stimulated the expression of all the genes. EGF and HGF stimulated the expression of all the genes except jun D and for EGF fos B. All these effects were obtained in the presence and in the absence of insulin, which shows that insulin is not necessary for the effects of the mitogens on immediate early gene expression. The definition of the repertoire of early immediate genes inductible by the various growth cascades provides a framework for the analysis of gene expression in tumors. (1) Insulin was able to induce all the protooncogenes investigated except fos B. This suggests that fos B could be the factor missing for insulin to induce mitogenesis. (2) No characteristic pattern of immediate early gene expression has been observed for insulin, which induces cell hypertrophy and is permissive for the action of the other growth factors. These effects are therefore not accounted for by a specific immediate early gene expression. On the other hand, insulin clearly enhances the effects of TSH, phorbol ester, and EGF on c-myc, junB, and c-fos expression. This suggests that the effect of insulin on mitogenesis might result from quantitative differences in the transcription complexes formed. (3) c-myc, c-fos, and jun B mRNA induction by all stimulating agents, whether inducing cell hypertrophy, or growth and dedifferentiation, or growth and differentiation, suggests that, although these expressions are not sufficient, they may be necessary for the various growth responses of thyroid cells. (4) The inhibition of c-jun and egr1 mRNA expression, and the marked induction of jun D mRNA appear to be specific features of the TSH cAMP pathway. They might be related to its differentiating action. (5) fos B, which is induced by TSH, forskolin, phorbol ester, and HGF but not by insulin, could be involved in the mitogenic action of the former factors.
Resumo:
The regular doubling of cell mass, and therefore of cell protein content, is required for repetitive cell divisions. Preliminary observations have shown that in dog thyrocytes insulin induces protein accumulation but not DNA synthesis, while TSH does not increase protein accumulation but triggers DNA synthesis in the presence of insulin. We show here that EGF and phorbol myristate ester complement insulin action in the same way. HGF is the only factor activating both protein accumulation and DNA synthesis. The effects of insulin on protein accumulation and in permitting the TSH effect are reproduced by IGF-1 and are mediated, at least in part by the IGF-1 receptor. The concentration effect curves are similar for both effects. Similar results are obtained in human thyrocytes. They reflect true cell growth, as shown by increases in RNA content and cell size. Carbachol and fetal calf serum also stimulate protein synthesis and accumulation without triggering DNA synthesis, but they are not permissive for the mitogenic effects of TSH or of the general adenylate cyclase activator, forskolin. Moreover the mitogenic effect of TSH greatly decreased in cells deprived of insulin for 2 days although these cells remain hypertrophic. Hypertrophy may therefore be necessary for cell division, but it is not sufficient to permit it. Three different mechanisms can therefore be distinguished in the mitogenic action of TSH: (1) the increase of cell mass (hypertrophy) induced by insulin or IGF-1; (2) the permissive effect of insulin or IGF-1 on the mitogenic effect of TSH which may involve both the increase of cell mass and the induction of specific proteins such as cyclin D3 and (3) the mitogenic effect of the TSH cyclic AMP cascade proper.
Resumo:
Three β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) catalyze the oxidative conversion of Δ5-3β-hydroxysteroids to the Δ4-3-keto configuration and is therefore essential for the biosynthesis of all classes of hormonal steroids, namely progesterone, glucocorticoids, mineralocorticoids, androgens, and estrogens. Using human 3β-HSD cDNA as probe, a human 3β-HSD gene was isolated from a λ-EMBL3 library of leucocyte genomic DNA. A fragment of 3β-HSD genomic DNA was also obtained by amplification of genomic DNA using the polymerase chain reaction. The 3β-HSD gene contains a 5′-untranslated exon of 53 base pairs (bp) and three successive translated exons of 232, 165, and 1218 bp, respectively, separated by introns of 129, 3883, and 2162 bp. The transcription start site is situated 267 nucleotides upstream from the ATG initiating codon. DNA sequence analysis of the 5′-flanking region reveals the existence of a putative TATA box (ATAAA) situated 28 nucleotides upstream from the transcription start site while a putative CAAT binding sequence is located 57 nucleotides upstream from the TATA box. Expression of a cDNA insert containing the coding region of 3β-HSD in nonsteroidogenic cells shows that the gene encodes a single 42-kDa protein containing both 3β-hydroxysteroid dehydrogenase and Δ5-Δ4-isomerase activities. Moreover, all natural steroid substrates tested are transformed with comparable efficiency by the enzyme. In addition to its importance for studies of the regulation of expression of 3β-HSD in gonadal as well as peripheral tissues, knowledge of the structure of the human 3β-HSD gene should permit investigation of the molecular defects responsible for 3β-HSD deficiency, the second most common cause of adrenal hyperplasia in children.
Resumo:
SWAP-70-like adapter of T cells (SLAT) is a novel guanine nucleotide exchange factor for Rho GTPases that is upregulated in Th2 cells, but whose physiological function is unclear. We show that SLAT-/- mice displayed a developmental defect at one of the earliest stages of thymocyte differentiation, the double-negative 1 (DN1) stage, leading to decreased peripheral T cell numbers. SLAT-/- peripheral CD4+ T cells demonstrated impaired TCR/CD28-induced proliferation and IL-2 production, which was rescued by the addition of exogenous IL-2. Importantly, SLAT-/- mice were grossly impaired in their ability to mount not only Th2, but also Th1-mediated lung inflammatory responses, as evidenced by reduced airway neutrophilia and eosinophilia, respectively. Levels of Th1 and Th2 cytokine in the lungs were also markedly reduced, paralleling the reduction in pulmonary inflammation. This defect in mounting Th1/Th2 responses, which was also evident in vitro, was traced to a severe reduction in Ca2+ mobilization from ER stores, which consequently led to defective TCR/CD28-induced translocation of nuclear factor of activated T cells 1/2 (NFATc1/2). Thus, SLAT is required for thymic DN1 cell expansion, T cell activation, and Th1 and Th2 inflammatory responses.