4 resultados para Vincent Jouve
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Spatially periodic vegetation patterns are well known in arid and semi-arid regions around the world. Mathematical models have been developed that attribute this phenomenon to a symmetry-breaking instability. Such models are based on the interplay between competitive and facilitative influences that the vegetation exerts on its own dynamics when it is constrained by arid conditions, but evidence for these predictions is still lacking. Moreover, not all models can account for the development of regularly spaced spots of bare ground in the absence of a soil prepattern. We applied Fourier analysis to high-resolution, remotely sensed data taken at either end of a 40-year interval in southern Niger. Statistical comparisons based on this textural characterization gave us broad-scale evidence that the decrease in rainfall over recent decades in the sub-Saharan Sahel has been accompanied by a detectable shift from homogeneous vegetation cover to spotted patterns marked by a spatial frequency of about 20 cycles km-1. Wood cutting and grazing by domestic animals have led to a much more marked transition in unprotected areas than in a protected reserve. Field measurements demonstrated that the dominant spatial frequency was endogenous rather than reflecting the spatial variation of any pre-existing heterogeneity in soil properties. All these results support the use of models that can account for periodic vegetation patterns without invoking substrate heterogeneity or anisotropy, and provide new elements for further developments, refinements and tests. This study underlines the potential of studying vegetation pattern properties for monitoring climatic and human impacts on the extensive fragile areas bordering hot deserts. Explicit consideration of vegetation self-patterning may also improve our understanding of vegetation and climate interactions in arid areas. © 2006 The Authors.
Resumo:
SCOPUS: ar.j
Impact of tumor board recommendations on treatment outcome for locally advanced head and neck cancer
Resumo:
Background/Aims: To identify physician selection factors in the treatment of locally advanced head and neck cancer and how treatment outcome is affected by Tumor Board recommendations. Methods: A retrospective analysis of 213 patients treated for locally advanced head and neck cancer in a single institution was performed. All treatments followed Tumor Board recommendations: 115 patients had chemotherapy and radiation, and 98 patients received postoperative radiation. Patient characteristics, treatment toxicity, locoregional control and survival between these two treat- ment groups were compared. Patient survival was compared with survival data reported in randomized studies of locally advanced head and neck cancer. Results: There were no differences in comorbidity factors, and T or N stages between the two groups. A statistically significant number of patients with oropharyngeal and oral cavity tumors had chemoradiation and postoperative radiation, respectively (p < 0.0001). Grade 3-4 toxicities during treatment were 48 and 87% for the postoperative radiation and chemoradiation groups, respectively (p = 0.0001). There were no differences in survival, locoregional recurrences and distant metastases between the two groups. Patient survival was comparable to survival rates reported by randomized studies of locally advanced head and neck cancer. Conclusion: Disease sites remained the key determining factor for treatment selection. Multidisciplinary approaches provided optimal treatment outcome for locally advanced head and neck cancer, with overall survival in these patients being comparable to that reported in randomized clinical trials. Copyright © 2008 S. Karger AG.
Resumo:
ERM is a member of the PEA3 group of the Ets transcription factor family that plays important roles in development and tumorigenesis. The PEA3s share an N-terminal transactivation domain (TADn) whose activity is inhibited by small ubiquitin-like modifier (SUMO). However, the consequences of sumoylation and its underlying molecular mechanism remain unclear. The domain structure of ERM TADn alone or modified by SUMO-1 was analyzed using small-angle X-ray scattering (SAXS). Low resolution shapes determined ab initio from the scattering data indicated an elongated shape and an unstructured conformation of TADn in solution. Covalent attachment of SUMO-1 does not perturb the structure of TADn as indicated by the linear arrangement of the SUMO moiety with respect to TADn. Thus, ERM belongs to the growing family of proteins that contain intrinsically unstructured regions. The flexible nature of TADn may be instrumental for ERM recognition and binding to diverse molecular partners.