2 resultados para Vermont and Canada Railroad Co.

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an experimental model, variable and intermittent contact force (CF) resulted in a significant decrease in lesion volume. In humans, variability of CF during pulmonary vein isolation has not been characterized. Methods and Results-In 20 consecutive patients undergoing CF-guided circumferential pulmonary vein isolation, 914 radiofrequency applications (530 in sinus rhythm and 384 in atrial fibrillation) were analyzed. The variability of the 60% CF range (CF60%) was 17 ± 9.6 g. Hundred seventy-one (19%) applications were delivered with constant, 717 (78%) with variable, and 26 (3%) with intermittent CF. The mean CF and force-time integral were significantly higher during applications with variable than with intermittent or constant CF. There was no significant difference in CF variability, CF60% variability, and force-time integral between applications delivered in sinus rhythm and atrial fibrillation. The main reasons for CF variability were systolo-diastolic heart movement (29%) and respiration (27%). In 10 additional patients, during adenosine-induced atrioventricular block, the minimum CF significantly increased at 19 sites (5.3 ± 4.4 versus 13.4 ± 5.9 g; P < 0.001) and at 16 sites intermittent or variable CF became constant. At only 1 site systolo-diastolic movement remained the main reason for variable CF. Conclusions-CF during pulmonary vein isolation remains highly variable despite efforts to optimize contact. CF and CF parameters were similar during sinus rhythm and atrial fibrillation. The main reasons for CF variability are systolodiastolic heart movement and respiration. The systolo-diastolic peaks and nadirs of CF are because of ventricular contractions at the large majority of pulmonary vein isolation sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.