2 resultados para Variational inequalities

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many instances of holographic correspondences between a d-dimensional boundary theory and a (. d+. 1)-dimensional bulk, a direct argument in the boundary theory implies that there must exist a simple and precise relation between the Euclidean on-shell action of a (. d-. 1)-brane probing the bulk geometry and the Euclidean gravitational bulk action. This relation is crucial for the consistency of holography, yet it is non-trivial from the bulk perspective. In particular, we show that it relies on a nice isoperimetric inequality that must be satisfied in a large class of Poincaré-Einstein spaces. Remarkably, this inequality follows from theorems by Lee and Wang.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUT solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses. © 2006 The American Physical Society.