2 resultados para Two-color laser fields
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We investigate the problem of introducing consistent self-couplings in free theories for mixed tensor gauge fields whose symmetry properties are characterized by Young diagrams made of two columns of arbitrary (but different) lengths. We prove that, in flat space, these theories admit no local, Poincaré-invariant, smooth, selfinteracting deformation with at most two derivatives in the Lagrangian. Relaxing the derivative and Lorentz-invariance assumptions, there still is no deformation that modifies the gauge algebra, and in most cases no deformation that alters the gauge transformations. Our approach is based on a Becchi-Rouet-Stora-iyutin (BRST) -cohomology deformation procedure. © 2005 American Institute of Physics.
Resumo:
We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUT solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses. © 2006 The American Physical Society.