7 resultados para Task modification
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Efficient early identification of primary immunodeficiency disease (PID) is important for prognosis, but is not an easy task for non-immunologists. The Clinical Working Party of the European Society for Immunodeficiencies (ESID) has composed a multi-stage diagnostic protocol that is based on expert opinion, in order to increase the awareness of PID among doctors working in different fields. The protocol starts from the clinical presentation of the patient; immunological skills are not needed for its use. The multi-stage design allows cost-effective screening for PID within the large pool of potential cases in all hospitals in the early phases, while more expensive tests are reserved for definitive classification in collaboration with an immunologist at a later stage. Although many PIDs present in childhood, others may present at any age. The protocols presented here are therefore aimed at both adult physicians and paediatricians. While designed for use throughout Europe, there will be national differences which may make modification of this generic algorithm necessary.
Resumo:
The research project takes place within the technology acceptability framework which tries to understand the use made of new technologies, and concentrates more specifically on the factors that influence multi-touch devices’ (MTD) acceptance and intention to use. Why be interested in MTD? Nowadays, this technology is used in all kinds of human activities, e.g. leisure, study or work activities (Rogowski and Saeed, 2012). However, the handling or the data entry by means of gestures on multi-touch-sensitive screen imposes a number of constraints and consequences which remain mostly unknown (Park and Han, 2013). Currently, few researches in ergonomic psychology wonder about the implications of these new human-computer interactions on task fulfillment.This research project aims to investigate the cognitive, sensori-motor and motivational processes taking place during the use of those devices. The project will analyze the influences of the use of gestures and the type of gesture used: simple or complex gestures (Lao, Heng, Zhang, Ling, and Wang, 2009), as well as the personal self-efficacy feeling in the use of MTD on task engagement, attention mechanisms and perceived disorientation (Chen, Linen, Yen, and Linn, 2011) when confronted to the use of MTD. For that purpose, the various above-mentioned concepts will be measured within a usability laboratory (U-Lab) with self-reported methods (questionnaires) and objective indicators (physiological indicators, eye tracking). Globally, the whole research aims to understand the processes at stakes, as well as advantages and inconveniences of this new technology, to favor a better compatibility and adequacy between gestures, executed tasks and MTD. The conclusions will allow some recommendations for the use of the DMT in specific contexts (e.g. learning context).
Resumo:
Nowadays multi-touch devices (MTD) can be found in all kind of contexts. In the learning context, MTD availability leads many teachers to use them in their class room, to support the use of the devices by students, or to assume that it will enhance the learning processes. Despite the raising interest for MTD, few researches studying the impact in term of performance or the suitability of the technology for the learning context exist. However, even if the use of touch-sensitive screens rather than a mouse and keyboard seems to be the easiest and fastest way to realize common learning tasks (as for instance web surfing behaviour), we notice that the use of MTD may lead to a less favourable outcome. The complexity to generate an accurate fingers gesture and the split attention it requires (multi-tasking effect) make the use of gestures to interact with a touch-sensitive screen more difficult compared to the traditional laptop use. More precisely, it is hypothesized that efficacy and efficiency decreases, as well as the available cognitive resources making the users’ task engagement more difficult. Furthermore, the presented study takes into account the moderator effect of previous experiences with MTD. Two key factors of technology adoption theories were included in the study: familiarity and self-efficacy with the technology.Sixty university students, invited to a usability lab, are asked to perform information search tasks on an online encyclopaedia. The different tasks were created in order to execute the most commonly used mouse actions (e.g. right click, left click, scrolling, zooming, key words encoding…). Two different conditions were created: (1) MTD use and (2) laptop use (with keyboard and mouse). The cognitive load, self-efficacy, familiarity and task engagement scales were adapted to the MTD context. Furthermore, the eye-tracking measurement would offer additional information about user behaviours and their cognitive load.Our study aims to clarify some important aspects towards the usage of MTD and the added value compared to a laptop in a student learning context. More precisely, the outcomes will enhance the suitability of MTD with the processes at stakes, the role of previous knowledge in the adoption process, as well as some interesting insights into the user experience with such devices.
Resumo:
Over the last decade, multi-touch devices (MTD) have spread in a range of contexts. In the learning context, MTD accessibility leads more and more teachers to use them in their classroom, assuming that it will improve the learning activities. Despite a growing interest, only few studies have focused on the impacts of MTD use in terms of performance and suitability in a learning context.However, even if the use of touch-sensitive screens rather than a mouse and keyboard seems to be the easiest and fastest way to realize common learning tasks (as for instance web surfing), we notice that the use of MTD may lead to a less favorable outcome. More precisely, tasks that require users to generate complex and/or less common gestures may increase extrinsic cognitive load and impair performance, especially for intrinsically complex tasks. It is hypothesized that task and gesture complexity will affect users’ cognitive resources and decrease task efficacy and efficiency. Because MTD are supposed to be more appealing, it is assumed that it will also impact cognitive absorption. The present study also takes into account user’s prior knowledge concerning MTD use and gestures by using experience with MTD as a moderator. Sixty university students were asked to perform information search tasks on an online encyclopedia. Tasks were set up so that users had to generate the most commonly used mouse actions (e.g. left/right click, scrolling, zooming, text encoding…). Two conditions were created: MTD use and laptop use (with mouse and keyboard) in order to make a comparison between the two devices. An eye tracking device was used to measure user’s attention and cognitive load. Our study sheds light on some important aspects towards the use of MTD and the added value compared to a laptop in a student learning context.
Resumo:
info:eu-repo/semantics/published
Resumo:
Peptide microarrays are useful tools for characterizing the humoral response against methylated antigens. They are usually prepared by printing unmodified and methylated peptides on substrates such as functionalized microscope glass slides. The preferential capture of antibodies by methylated peptides suggests the specific recognition of methylated epitopes. However, unmodified peptide epitopes can be masked due to their interaction with the substrate. The accessibility of unmodified peptides and thus the specificity of the recognition of methylated peptide epitopes can be probed using the in situ methylation procedure described here. Alternately, the in situ methylation of peptide microarrays allows probing the presence of antibodies directed toward methylated epitopes starting from easy-to-make and cost-effective unmodified peptide libraries. In situ methylation was performed using formaldehyde in the presence of sodium cyanoborohydride and nickel chloride. This chemical procedure converts lysine residues into mono- or dimethyl lysines.
Resumo:
In recent years, neuroscience research spent much effort in revealing brain activity related to metacognition. Despite this endeavor, it remains unclear exactly when metacognitive experiences develop during task performance. To investigate this, the current study used EEG to temporally and spatially dissociate task-related activity from metacognitive activity. In a masked priming paradigm, metacognitive experiences of difficulty were induced by manipulating congruency between prime and target. As expected, participants more frequently rated incongruent trials as difficult and congruent trials as easy, while being completely unable to perceive the masked primes. Results showed that both the N2 and the P3 ERP components were modulated by congruency, but that only the P3 modulation interacted with metacognitive experiences. Single-trial analysis additionally showed that the magnitude of the P3 modulation by congruency accurately predicted the metacognitive response. Source localization indicated that the N2 task-related activity originated in the ACC, whereas the P3-interplay between task-related activation and metacognitive experiences originated from the precuneus. We conclude that task-related activity can be dissociated from later metacognitive processing.