3 resultados para Systems of Linear Diophantine Constraints
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
A singular perturbation method is applied to a non-conservative system of two weakly coupled strongly nonlinear non-identical oscillators. For certain parameters, localized solutions exist for which the amplitude of one oscillator is an order of magnitude smaller than the other. It is shown that these solutions are described by coupled equations for the phase difference and scaled amplitudes. Three types of localized solutions are obtained as solutions to these equations which correspond to phase locking, phase drift, and phase entrainment. Quantitative results for the phases and amplitudes of the oscillators and the stability of these phenomena are expressed in terms of the parameters of the model.
Resumo:
info:eu-repo/semantics/published
Resumo:
We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.