1 resultado para Stochastic Approximation Algorithms
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (3)
- Aston University Research Archive (14)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (73)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Brock University, Canada (23)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (198)
- Cochin University of Science & Technology (CUSAT), India (28)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (171)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (3)
- CUNY Academic Works (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (32)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Galway Mayo Institute of Technology, Ireland (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (41)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (9)
- Massachusetts Institute of Technology (12)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (5)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- Scielo Saúde Pública - SP (12)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (7)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (13)
- Universidade do Minho (11)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (10)
- Université de Lausanne, Switzerland (84)
- Université de Montréal, Canada (44)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (69)
- University of Southampton, United Kingdom (4)
- University of Washington (2)
Resumo:
We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1/2-ε)-approximations for CLIQUE require LPs of size 2nΩ(ε). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov's [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.