1 resultado para Single phase power systems
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Filtro por publicador
- Aberdeen University (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (31)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (56)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (21)
- Cochin University of Science & Technology (CUSAT), India (10)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Dalarna University College Electronic Archive (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (8)
- Digital Commons at Florida International University (14)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (36)
- DRUM (Digital Repository at the University of Maryland) (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (121)
- Laboratório Nacional de Energia e Geologia - Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (2)
- National Aerospace Laboratory (NLR) Reports Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (36)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (327)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scielo Saúde Pública - SP (7)
- Universidad Politécnica de Madrid (24)
- Universidade do Minho (9)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (22)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (49)
- University of Queensland eSpace - Australia (27)
- University of Southampton, United Kingdom (8)
- University of Washington (1)
Resumo:
Static state estimators currently in use in power systems are prone to masking by multiple bad data. This is mainly because the power system regression model contains many leverage points; typically they have a cluster pattern. As reported recently in the statistical literature, only high breakdown point estimators are robust enough to cope with gross errors corrupting such a model. This paper deals with one such estimator, the least median of squares estimator, developed by Rousseeuw in 1984. The robustness of this method is assessed while applying it to power systems. Resampling methods are developed, and simulation results for IEEE test systems discussed. © 1991 IEEE.