4 resultados para Quantized Fields
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
We consider massless higher spin gauge theories with both electric and magnetic sources, with a special emphasis on the spin two case. We write the equations of motion at the linear level (with conserved external sources) and introduce Dirac strings so as to derive the equations from a variational principle. We then derive a quantization condition that generalizes the familiar Dirac quantization condition, and which involves the conserved charges associated with the asymptotic symmetries for higher spins. Next we discuss briefly how the result extends to the nonlinear theory. This is done in the context of gravitation, where the Taub-NUT solution provides the exact solution of the field equations with both types of sources. We rederive, in analogy with electromagnetism, the quantization condition from the quantization of the angular momentum. We also observe that the Taub-NUT metric is asymptotically flat at spatial infinity in the sense of Regge and Teitelboim (including their parity conditions). It follows, in particular, that one can consistently consider in the variational principle configurations with different electric and magnetic masses. © 2006 The American Physical Society.
Resumo:
We investigate the problem of introducing consistent self-couplings in free theories for mixed tensor gauge fields whose symmetry properties are characterized by Young diagrams made of two columns of arbitrary (but different) lengths. We prove that, in flat space, these theories admit no local, Poincaré-invariant, smooth, selfinteracting deformation with at most two derivatives in the Lagrangian. Relaxing the derivative and Lorentz-invariance assumptions, there still is no deformation that modifies the gauge algebra, and in most cases no deformation that alters the gauge transformations. Our approach is based on a Becchi-Rouet-Stora-iyutin (BRST) -cohomology deformation procedure. © 2005 American Institute of Physics.
Resumo:
The problem of constructing consistent parity-violating interactions for spin-3 gauge fields is considered in Minkowski space. Under the assumptions of locality, Poincaré invariance, and parity noninvariance, we classify all the nontrivial perturbative deformations of the Abelian gauge algebra. In space-time dimensions n=3 and n=5, deformations of the free theory are obtained which make the gauge algebra non-Abelian and give rise to nontrivial cubic vertices in the Lagrangian, at first order in the deformation parameter g. At second order in g, consistency conditions are obtained which the five-dimensional vertex obeys, but which rule out the n=3 candidate. Moreover, in the five-dimensional first-order deformation case, the gauge transformations are modified by a new term which involves the second de Wit-Freedman connection in a simple and suggestive way. © 2006 The American Physical Society.
Resumo:
The antibracket in the antifield-BRST formalism is known to define a map Hp × Hq → Hp + q + 1 associating with two equivalence classes of BRST invariant observables of respective ghost number p and q an equivalence class of BRST invariant observables of ghost number p + q + 1. It is shown that this map is trivial in the space of all functionals, i.e. that its image contains only the zeroth class. However, it is generically non-trivial in the space of local functionals. Implications of this result for the problem of consistent interactions among fields with a gauge freedom are then drawn. It is shown that the obstructions to constructing non-trivial such interactions lie precisely in the image of the antibracket map and are accordingly non-existent if one does not insist on locality. However consistent local interactions are severely constrained. The example of the Chern-Simons theory is considered. It is proved that the only consistent, local, Lorentz covariant interactions for the abelian models are exhausted by the non-abelian Chern-Simons extensions. © 1993.