2 resultados para Pseudo-Differential Boundary Problems

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inverse diffraction consists in determining the field distribution on a boundary surface from the knowledge of the distribution on a surface situated within the domain where the wave propagates. This problem is a good example for illustrating the use of least-squares methods (also called regularization methods) for solving linear ill-posed inverse problem. We focus on obtaining error bounds For regularized solutions and show that the stability of the restored field far from the boundary surface is quite satisfactory: the error is proportional to ∊(ðŗ‚ ≃ 1) ,ðŗœ being the error in the data (Hölder continuity). However, the error in the restored field on the boundary surface is only proportional to an inverse power of │In∊│ (logarithmic continuity). Such a poor continuity implies some limitations on the resolution which is achievable in practice. In this case, the resolution limit is seen to be about half of the wavelength. Copyright © 1981 by The Institute of Electrical and Electronics Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of real hypersurfaces in pseudo-Riemannian complex space forms and para-complex space forms, which are the pseudo-Riemannian generalizations of the complex space forms, is addressed. It is proved that there are no umbilic hypersurfaces, nor real hypersurfaces with parallel shape operator in such spaces. Denoting by J be the complex or para-complex structure of a pseudo-complex or para-complex space form respectively, a non-degenerate hypersurface of such space with unit normal vector field N is said to be Hopf if the tangent vector field JN is a principal direction. It is proved that if a hypersurface is Hopf, then the corresponding principal curvature (the Hopf curvature) is constant. It is also observed that in some cases a Hopf hypersurface must be, locally, a tube over a complex (or para-complex) submanifold, thus generalizing previous results of Cecil, Ryan and Montiel.