5 resultados para Program A : Business And Industry Development

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) is involved in the regulation of ovarian follicular development and has been shown to potentiate the FSH responsiveness of granulosa cells from preantral follicles. The aim of the present study was to investigate the effect of IGF-I during preantral follicular culture on steroidogenesis, subsequent oocyte maturation, fertilization, and embryo development in mice. Preantral follicles were isolated mechanically and cultured for 12 days in a simplified culture medium supplemented with 1% fetal calf serum, recombinant human FSH, transferrin, and selenium. In these conditions, follicles were able to grow and produce oocytes that could be matured and fertilized. The first experiment analyzed the effect of different concentrations of IGF-I (0, 10, 50, or 100 ng/ml) added to the culture medium on the follicular survival, steroidogenesis, and the oocyte maturation process. The presence of IGF-I during follicular growth increased the secretion of estradiol but had no effect on the subsequent oocyte survival and maturation rates. In the second experiment, IGF-I (0 or 50 ng/ml) was added to the culture medium during follicular growth, oocyte maturation, or both, and subsequent oocyte fertilization and embryo development rates were evaluated. Oocyte fertilization rates were comparable in the presence or absence of IGF-I. However, the blastocyst development rate was enhanced after follicular culture in the presence of IGF-I. Moreover, the total cell number of the blastocysts observed after differential labeling staining was also higher when follicles were cultured or matured in the presence of IGF-I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The use of mechanical and enzymatic techniques to isolate preantral follicles before in-vitro culture has been previously described. The aim of this study was to assess the effect of the isolation procedure of mouse preantral follicles on their subsequent development in vitro. Methods: Follicles were isolated either mechanically or enzymatically and cultured using an individual non-spherical culture system. Follicular development and steroidogenesis, oocyte in-vitro maturation and embryo development were assessed for both groups. Results: After 12 days of culture, follicles isolated mechanically had a higher survival rate but a lower antral-like cavity formation rate than follicles isolated enzymatically. Enzymatic follicle isolation was associated with a higher production of testosterone and estradiol compared with mechanical isolation. A stronger phosphatase alkaline reaction was observed after enzymatic isolation, suggesting that follicles isolated enzymatically had more theca cells than those isolated mechanically. However, both isolation techniques resulted in similar oocyte maturation and embryo development rates. Conclusions: Enzymatic follicular isolation did not affect theca cell development. Follicular steroidogenesis was enhanced after enzymatic isolation but the developmental capacity of oocytes was comparable to that obtained after mechanical isolation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown previously that female mice homozygous for an alpha-fetoprotein (AFP) null allele are sterile as a result of anovulation, probably due to a defect in the hypothalamic-pituitary axis. Here we show that these female mice exhibit specific anomalies in the expression of numerous genes in the pituitary, including genes involved in the gonadotropin-releasing hormone pathway, which are underexpressed. In the hypothalamus, the gonadotropin-releasing hormone gene, Gnrh1, was also found to be down-regulated. However, pituitary gene expression could be normalized and fertility could be rescued by blocking prenatal estrogen synthesis using an aromatase inhibitor. These results show that AFP protects the developing female brain from the adverse effects of prenatal estrogen exposure and clarify a long-running debate on the role of this fetal protein in brain sexual differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/published