5 resultados para Poincaré-Bendixson, Teorema de
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
Using BRST-cohomological techniques, we analyze the consistent deformations of theories describing free tensor gauge fields whose symmetries are represented by Young tableaux made of two columns of equal length p, p > 1. Under the assumptions of locality and Poincaré invariance, we find that there is no consistent deformation of these theories that non-trivially modifies the gauge algebra and/or the gauge transformations. Adding the requirement that the deformation contains no more than two derivatives, the only possible deformation is a cosmological-constant-like term. © SISSA/ISAS 2004.
Resumo:
We investigate the problem of introducing consistent self-couplings in free theories for mixed tensor gauge fields whose symmetry properties are characterized by Young diagrams made of two columns of arbitrary (but different) lengths. We prove that, in flat space, these theories admit no local, Poincaré-invariant, smooth, selfinteracting deformation with at most two derivatives in the Lagrangian. Relaxing the derivative and Lorentz-invariance assumptions, there still is no deformation that modifies the gauge algebra, and in most cases no deformation that alters the gauge transformations. Our approach is based on a Becchi-Rouet-Stora-iyutin (BRST) -cohomology deformation procedure. © 2005 American Institute of Physics.
Resumo:
We study the problem of consistent interactions for spin-3 gauge fields in flat spacetime of arbitrary dimension 3$">n>3. Under the sole assumptions of Poincaré and parity invariance, local and perturbative deformation of the free theory, we determine all nontrivial consistent deformations of the abelian gauge algebra and classify the corresponding deformations of the quadratic action, at first order in the deformation parameter. We prove that all such vertices are cubic, contain a total of either three or five derivatives and are uniquely characterized by a rank-three constant tensor (an internal algebra structure constant). The covariant cubic vertex containing three derivatives is the vertex discovered by Berends, Burgers and van Dam, which however leads to inconsistencies at second order in the deformation parameter. In dimensions 4$">n>4 and for a completely antisymmetric structure constant tensor, another covariant cubic vertex exists, which contains five derivatives and passes the consistency test where the previous vertex failed. © SISSA 2006.
Resumo:
The problem of constructing consistent parity-violating interactions for spin-3 gauge fields is considered in Minkowski space. Under the assumptions of locality, Poincaré invariance, and parity noninvariance, we classify all the nontrivial perturbative deformations of the Abelian gauge algebra. In space-time dimensions n=3 and n=5, deformations of the free theory are obtained which make the gauge algebra non-Abelian and give rise to nontrivial cubic vertices in the Lagrangian, at first order in the deformation parameter g. At second order in g, consistency conditions are obtained which the five-dimensional vertex obeys, but which rule out the n=3 candidate. Moreover, in the five-dimensional first-order deformation case, the gauge transformations are modified by a new term which involves the second de Wit-Freedman connection in a simple and suggestive way. © 2006 The American Physical Society.
Resumo:
In many instances of holographic correspondences between a d-dimensional boundary theory and a (. d+. 1)-dimensional bulk, a direct argument in the boundary theory implies that there must exist a simple and precise relation between the Euclidean on-shell action of a (. d-. 1)-brane probing the bulk geometry and the Euclidean gravitational bulk action. This relation is crucial for the consistency of holography, yet it is non-trivial from the bulk perspective. In particular, we show that it relies on a nice isoperimetric inequality that must be satisfied in a large class of Poincaré-Einstein spaces. Remarkably, this inequality follows from theorems by Lee and Wang.