3 resultados para Parent and teenager.

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neutron multidetector DéMoN has been used to investigate the symmetric splitting dynamics in the reactions 58.64Ni + 208Pb with excitation energies ranging from 65 to 186 MeV for the composite system. An analysis based on the new backtracing technique has been applied on the neutron data to determine the two-dimensional correlations between the parent composite system initial thermal energy (EthCN) and the total neutron multiplicity (νtot), and between pre- and post-scission neutron multiplicities (νpre and νpost, respectively). The νpre distribution shape indicates the possible coexistence of fast-fission and fusion-fission for the system 58Ni + 208Pb (Ebeam = 8.86 A MeV). The analysis of the neutron multiplicities in the framework of the combined dynamical statistical model (CDSM) gives a reduced friction coefficient β = 23 ± 2512 × 1021 s-1, above the one-body dissipation limit. The corresponding fission time is τf = 40 ± 4620 × 10-21 s. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water-rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≃300°C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photophysical properties of Ru(II) and Re(I) polypyridyl complexes including a bis-bipyridyl pyrene ligand are presented. The complexes ([(bpy)(2)Ru](2)bpb)(4+) and [(CO)(3)ReCl(bpb)] (bpy = 2,2'-bipyridine, bpb = 1,6-bis-(4-(2,2'-bipyrid-yl)-pyrene) were designed with the intent of examining intramolecular energy migration between MLCT states localized on the metal complexes and pyrene-localized (3)(pi-pi) states. Absorption spectroscopy of both complexes containing the bpb ligand reveals that in addition to the MLCT and the pyrene-centered (1)(pi-pi) transitions, a new absorption band is observed near 400 nm for both complexes. Absorption spectral data for the Re(I) complex strongly suggest the presence of a pyrene(pi) to bpy(pi) intraligand charge transfer (ILCT) transition. Emission spectra at room temperature and at 77 K are almost identical for the Ru(II) and Re(I) complexes containing the bpb ligand. The (3)MLCT emission of related bipyridyl compounds lacking the pyrene is observed at higher energy than for the pyrene-containing complexes, ([(bpy)(2)Ru](2)bpb)(4+) and [(CO(3)ReCl(bpb)]. The Ru(II) complex emits at room temperature with a remarkably long lifetime (130 micros in degassed DMSO). This emission is also strongly sensitive to oxygen and is almost entirely quenched in an aerated solution. In addition, excited-state absorption spectra exhibit features not consistent with (3)MLCT or (3)(pi-pi) states of the parent chromophores. The combined characteristics suggest the emission arises from either (3)(pi-pi) or (3)ILCT states or a state with mixed parentage.