2 resultados para Parametric oscillators
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
A singular perturbation method is applied to a non-conservative system of two weakly coupled strongly nonlinear non-identical oscillators. For certain parameters, localized solutions exist for which the amplitude of one oscillator is an order of magnitude smaller than the other. It is shown that these solutions are described by coupled equations for the phase difference and scaled amplitudes. Three types of localized solutions are obtained as solutions to these equations which correspond to phase locking, phase drift, and phase entrainment. Quantitative results for the phases and amplitudes of the oscillators and the stability of these phenomena are expressed in terms of the parameters of the model.
Resumo:
Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear indexguiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources. © 2002 Optical Society of America.